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1 Introduction

Gradient-based optimization methods have proven successful in learning complex, overparameterized
neural networks from non-convex objectives. Yet, the precise theoretical relationship between
gradient-based optimization methods, the resulting training dynamics, and generalization in deep
neural networks (DNNs) remains unclear. Recent work has investigated the training dynamics of
DNNs via a function-space perspective through the lens of the neural tangent kernel (NTK) [Jacot
et al., 2018]. Follow-up work explored avenues to compute the solution to the differential equation
described by the NTK approximately and analytically [Arora et al., 2019, Lee et al., 2019] at
great computational cost and at the cost of exactness, and Lee et al. [2019] has highlighted the
relationship between Gaussian processes with an NTK covariance function and deep ensemble
uncertainty estimates [Lakshminarayanan et al., 2017], suggesting possible applications of the NTK
as a tool to assess model uncertainty.

In this work, we investigate the training dynamics of overparameterized neural networks under
natural gradient descent [Amari, 1998, Martens, 2014]. Taking a function-space view of the training
dynamics, we give exact analytic solutions to the training dynamics on training points as well as to
the training dynamics linearized around the parameters at initialization evaluated on any arbitrary
input. Furthermore, we derive a bound on the discrepancy between the distributions over functions
at the optimum of natural gradient descent and the distribution over functions under the analytic
solution to the linearized natural gradient descent training dynamics.

2 Preliminaries

In this section, we will introduce the NTK of a deep neural network, describe natural gradient descent,
and show how to estimate the Fisher information matrix of a DNN.

2.1 Training Dynamics under Gradient Descent and the Neural Tangent Kernel

We define the NTK for n data points as in Lee et al. [2019] by stacking data points on top of each other.
Let X ∈ Rdn be the concatenation of training points, Y ∈ Rn the concatenation of training targets.
We define the concatenated output of the DNN fθ(·) for all points as fθ(X ) = vec (fθ(x))x∈X ∈ Rkn,
where θ are the network parameters and k is the number of output dimensions. We further define the
concatenated loss L(fθ(·)) : Rdn → R as L(fθ(X )) =

∑
i `(f(xi) and the concatenated likelihood

as p̃(Y|fθ(X )) =
∏
i p(yi|f(xi)). The gradient descent training dynamics of a DNN fθ(·) are then
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given by

ḟθt(X ) =
∂

∂t
fθt(X )

def
= −η∇θfθt(X )∇θfθt(X )>∇fL(fθ(X )), (1)

where η is the learning rate. The corresponding NTK under gradient descent is

Θθt(X ,X )
def
= ∇θfθt(X )∇θfθt(X )>. (2)

The NTK allows us to study generalization of DNNs from a function-space perspective [Jacot et al.,
2018] and has been applied to a range of prediction tasks [Arora et al., 2019, Lee et al., 2019].
Crucially, to achieve tractability, prior work has mostly considered infinitely-wide DNNs for which
the NTK is initialized randomly but stays constant during training.

2.2 Natural Gradient Descent

Natural gradients have been successfully used to improve optimization speed in many applica-
tions [Galy-Fajou et al., 2019, Pascanu and Bengio, 2014, Wenzel et al., 2019] and have been shown
to have desirable theoretical properties [Amari, 1998, Amari et al., 2019, Karakida et al., 2019,
Martens, 2014, Yang and Amari, 1997, Zhang et al., 2019]. Consider a model with an output (target)
distribution, p(y|fθ(x)) which is parameterized by a DNN, fθ(x). Let L be a loss function which
depends on p(y|fθ(x)). The natural gradient of L with respect to the set of model parameters θ is
then given by

∇̂θL(θ) = −F (θ)−1∇θL(θ), (3)

where F (θ) is the Fisher information matrix, and ∇̂θ denotes the natural gradient operator. In the
following, we will assume the log-likelihood loss L(p(y|fθ(x))) =

∑
i log p(yi|fθ(xi)).

Using these definitions, we can now state the DNN training dynamics as a function of time under
natural gradient descent. Following the natural parameter space training dynamics from Equation (3),
the training dynamics for a DNN for training data points X and output dimension k is given by the
differential equation

∂

∂t
θt = −η∇̂θL(θt) = −ηF (θt)

−1∇θfθt(X )>∇fL(fθ(X )),

where we note that the DNN parameters are a function of time and define θ(t) def
= θt for ease of

notation. The last equality follows by the chain rule, since L(θt) is a function of fθt .

2.3 Estimating the Fisher Information Matrix

Following Pascanu and Bengio [2014], the Fisher information matrix of a DNN is given by
F (θt) = Ep(x)[F (θt|x)], where

F (θt|x) = Ep(y|fθt (x))[∇θ log p(y|fθt(x))>∇θ log p(y|fθt(x))] (4)
is the Fisher information matrix conditioned on a single data point x. The empirical Fisher information
matrix F̃ (θt) is obtained by assuming the empirical distribution of the data p(x) = p(X ) leading to

F̃ (θt) =
1

n
∇θfθt(X )>Ep̃(y|f(X ))[∇f log p̃(y|f(X ))>∇f log p̃(y|f(X ))]∇θfθ(X ),

where we use the matrix identity A>A =
∑
iA
>
(i.)A(i.). For a Gaussian likelihood with variance σ2,

the empirical Fisher information matrix simplifies to

F̃ (θt) =
1

n
∇θfθt(X )>

1

σ2
∇θfθt(X ) =

1

nσ2
∇θfθt(X )>∇θfθt(X ). (5)

A detailed derivation of the concatenated Fisher information matrix can be found in Appendix B.

3 Training Dynamics under Natural Gradient Descent

In this section, we will take a function-space view of natural gradient descent, introduce the natural
neural tangent kernel, give exact analytic solutions to the training dynamics evaluated on training
points and to the training dynamics linearized around the parameters at initialization evaluated on any
arbitrary input, and derive a bound on the discrepancy between the distributions over functions at the
optimum of natural gradient descent and the analytic solution to the natural gradient descent training
dynamics.
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3.1 The Natural Neural Tangent Kernel

As for the training dynamics under gradient descent, since fθt(X ) is a function of θt, which in turn
is a function of time, we can express the function-space training dynamics under natural gradient
descent in terms of the parameter-space training dynamics as follows:

∂

∂t
fθt(X ) = −η∇θfθt(X )F (θt)

−1∇θfθt(X )>∇fL(fθ(X )). (6)

Inspecting these dynamics more closely, we see that the concatenated tangent kernel of a DNN fθ
with p parameters evaluated on training points X is given by the nk × nk-matrix

Θnat
θt (X ,X ) = ∇θfθt(X )F (θt)

−1∇θfθt(X )>, (7)

where ∇θfθt(X ) is a nk × p-matrix. We will refer to this kernel as the Natural Neural Tangent
Kernel (natural NTK). Following Jacot et al. [2018], we can thus express the function-space training
dynamics under natural gradient descent on an arbitrary test data point x in terms of the natural NTK
evaluated on x and the training points X ,

Θnat
θt (x,X ) = ∇θfθt(x)F (θt)

−1∇θfθt(X )>, (8)

which yields the function-space training dynamics

∂

∂t
fθt(X ) = −ηΘnat

θt (x,X )∇fL(fθ(X )). (9)

Using the expression of the empirical Fisher information given in Equation (5) for a Gaussian
likelihood with variance σ2, the empirical natural NTK evaluated on an an arbitrary data point x and
n training points X is given by

Θ̂nat
θt (x,X ) = nσ2∇θfθt(x)

(
∇θfθt(X )>∇θfθt(X )

)−1∇θfθt(X )>. (10)

A detailed derivation of the concatenated natural NTK can be found in Appendix C.2

3.2 Exact Solution to the Non-linearized Dynamics on Training Points

Gradient-based optimization of DNNs is scalable and can, under certain conditions, converge to a
global optimum [Chizat and Bach, 2018, Du et al., 2019, Oymak and Soltanolkotabi, 2019, Zhang
et al., 2019] but in practice requires significant fine-tuning of hyperparameters and is often slow to
converge. In this section, we consider the function-space training dynamics under natural gradient
descent on training as well on test points. In particular, we solve the training dynamics under natural
gradient descent on training points exactly and follow prior work [Lee et al., 2019] in linearizing the
training dynamics around the DNN parameters at initialization to make predictions on test points. In
other words, our solution allows us to make predictions from a DNN trained until convergence via
natural gradient descent at arbitrary points in the input space without actually performing natural
gradient descent.
Assumption 1 (Network Overparameterization). Let fθt(·) be a DNN with |θt| = p ∀t, the number
of network parameters. Assume that the DNN is overparameterized, that is, nk ≤ p.
Assumption 2 (Positive Definiteness of the Gram Matrix). Let nk ≤ p, and define the Jacobian
at initialization and at time step t during training as J0(x)

def
= ∇θfθt(x)

∣∣
θt=θ0

∈ Rnk×p and

Jt(x)
def
= ∇θfθt(x) ∈ Rk×p, respectively, and let G0(x) = J0(x)J0(x)> ∈ Rk×k and Gt(x) =

Jt(x)Jt(x)> ∈ Rk×k be the corresponding Gram matrices. Assume that Gt(x) = Jt(x)Jt(x)> is
positive definite for all t ≥ 0.

2We note that the natural NTK, Θ̂nat
θt , is a valid kernel function. To see that it is, note that (i) Jacot et al.

[2018] showed that the NTK induced by gradient descent is a valid kernel function and that (ii) the inverse Gram
matrix

(
∇θfθt(X )>∇θfθt(X )

)−1
in Equation (10) can be evaluated on any set of points from the empirical

distribution of the data and does not necessarily have to be evaluated on the full dataset X and, more specifically,
does not have to be evaluated on the data points of the second argument of the natural NTK. As a result, the
natural NTK is symmetric in its arguments, and all arguments for the validity of the NTK under gradient descent
given in [Jacot et al., 2018] carry over to the natural NTK.
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In the setting nk = p, the natural NTK evaluated on the training points X simplifies to the (scaled)
identity matrix

Θnat def
= Θ̂nat

t (X ,X ) = nσ2Ink. (11)
For nk < p, the Fisher matrix is almost surely singular but can be computed (non-uniquely) via the
generalized inverse [Bernacchia et al., 2018],

F̃ †(θt) = nσ2∇θfθt(X )>G−1
t (X )G−1

t (X )∇θfθt(X ), (12)

where Gt(X )
def
= ∇θfθt(X )∇θfθt(X )> ∈ Rnk×nk, and thus all terms involving X cancel out and

we again get
Θnat def

= Θ̂nat
t (X ,X ) = nσ2Ink. (13)

For the remainder of this paper, we assume the natural NTK in the overparameterized setting is
computed using the generalized inverse so that

Θ̂nat
θt (x,X ) = nσ2∇θfθt(x)∇θfθt(X )>

(
∇θfθt(X )∇θfθt(X )>

)−1
. (14)

Proposition 1 (Solution to Natural Gradient Descent Dynamics on Training Points). Under Assump-
tion 1 and under MSE loss, the function-space training dynamics (6) under natural gradient descent
on the training points X , ḟθt(X ), are linear in fθt and can be solved analytically

fθt(X ) =
(
I − e−

η
nΘnat·t

)
Y + e−

η
nΘnat·tfθ0(X ). (15)

Proof. See Appendix D.

We note that Proposition 1 deals with the stylized case of infinitesimally small step sizes. Zhang
et al. [2019] consider regular step sizes and show that, under certain regularity and Lipschitzness
assumptions, natural gradient descent can be shown to exhibit fast convergence to a global optimum.
For the remainder of this paper, we will focus on the function space defined by the solution of the
DNN training dynamics under natural gradient descent instead of the training dynamics on the training
points only.

3.3 Exact Solution to the Linearized Dynamics on Training and Test Points

In the previous section, we showed that for overparameterized DNNs, the natural gradient descent
training dynamics on the training points can be solved analytically. Unfortunately, on a test point x,
the training dynamics under natural gradient descent,

ḟθt(X ) = −ηΘ̂nat
t (x,X )∇fL(fθt(X )), (16)

with Θ̂nat
t (x,X ) = nσ2∇θfθt(x)∇θfθt(X )>

(
∇θfθt(X )∇θfθt(X )>

)−1

are not linear in fθt anymore, since the NTK is now evaluated on training and test points and does
thus not cancel out with the inverse. As a result, the natural NTK does not reduce to the scaled identity
matrix and continues to depend on fθt non-linearly.

In order to solve for the function-space defined by the DNN on any input point at any time during
training, we follow Lee et al. [2019] and assume a linear evolution of the DNN parameters:

Assumption 3 (Linearization). Assume that f lin
θt

(x)
def
= fθ0(x) +∇θfθt(x)

∣∣
θt=θ0

(θt − θ0).

Corollary 1. Throughout training via natural gradient descent, the solution to the linearized function-
space training dynamics evaluated on the training points, ḟ lin

θt
(X ), is identical to the solution

to the non-linearized function-space training dynamics on the training points, ḟθt(X ), that is,
f lin
θt

(X ) = fθt(X ).

Proof. See Appendix D.

Proposition 2 (Solution to Linearized Natural Gradient Descent Dynamics on a Test Point). Un-
der Assumption 1 and under MSE loss, the linearized function-space training dynamics under natural
gradient descent on a test point x, ḟ lin

θt
(x), can be solved as

f lin
θt (x) = fθ0(x)− 1

n
Θ̂nat

0 (x,X )
(
I − e−ησ

2t
)
fθ0(X ) +

1

n
Θ̂nat

0 (x,X )
(
I − e−ησ

2t
)
Y, (17)

with Θ̂nat
0 (x,X ) = nσ2∇θfθt(x)

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1

.
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Proof. See Appendix D.

Corollary 2. In the limit of training time, as t→∞, the solution to the linearized training dynamics
under natural gradient descent tends to

lim
t→∞

f lin
θt (x) = fθ0(x) +

1

n
Θ̂nat

0 (x,X ) (Y − fθ0(X )) ,

with Θ̂nat
0 (x,X ) = nσ2∇θfθt(x)

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1

.

In the limit of training time, as t → ∞, f lin
θt

(x) can be thought of as a perturbation of the DNN at
initialization (evaluated on x). Corollary 2 states that this perturbation is given by a linear transfor-
mation defined by the natural neural tangent kernel at initialization evaluated on a test point and all
training points applied to the difference between the function values of the DNN at initialization and
the true targets.3

From Corollary 2, we see that, at convergence the solution to the linearized training dynamics under
natural gradient descent is identical to the solution to the linearized training dynamics of gradient
descent derived in Lee et al. [2019]. Consequently, if the linearized training dynamics under gradient
descent and natural gradient descent result in the same predictive distribution at convergence, this
suggests that if we can relate the predictive distribution under natural gradient descent and linearized
natural gradient descent at convergence, we may be able to shed light on the DNN predictions under
converged gradient descent.

4 Discrepancy between Predictions under Linearized and True Dynamics

While prior work (e.g., Lee et al. [2019]) justified linearizing the DNN training dynamics around the
parameters at initialization by showing that, in the limit of infinitely wide hidden layers, the NTK
stays constant during training and the discrepancy between predictions from a linearized DNN match
those of a non-linearized DNN trained with gradient descent, we make no infinite width assumptions.
Instead, we derive an upper bound on the discrepancy between predictions on arbitrary points in input
space from a DNN trained via natural gradient descent and the analytical solution to the linearized
dynamics which varies with the the DNN architecture, initialization, its activation functions and
hyperparameters, the resulting training dynamics (via spectral norms dependent on s), and the data.

Lemma 1 (Natural Neural Tangent Kernel Bound). Let Θ̂nat
0 (x,X ) and Θ̂nat

t (x,X ) be the natural
NTK at initialization and at some time step t during training, respectively, and let λmax(Gt(x)) be the
largest eigenvalue of the Gram matrix for t ≥ 0. Under Assumption 1, for any random initialization,

1

nσ2
||Θ̂nat

0 (x,X )− Θ̂nat
t (x,X )||2 ≤

√
λmax(G0(x))

λmin(G0(X ))
+

√
λmax(G0(x))

λmin(Gt(X ))
+
||J0(x)− Js(x)||2√

λmin(Gt(X ))
(18)

Proof. See Appendix E.

In order to get guarantees for the quality of the predictions from the solution to the linearized
training dynamics, we consider the discrepancy between such predictions and predictions from a
DNN trained via natural gradient descent. Theorem 1 establishes an upper bound on this discrepancy
and guarantees that, for any random initialization, the predictions from the linearized model are in
some neighborhood of the predictions of the true optimum of the trained DNN.
Theorem 1 (Prediction Error under Linearized Training Dynamics). Let (x, y) be an input-output
test set pair, X and Y the training input and output sets, respectively, η the learning rate, σ2 the
variance of the Gaussian likelihood, f lin

θt
(x) the function predictions from the analytical solution to

the linearized training dynamics under natural gradient descent (a random variable), and fθt(x)
the function predictions obtained from running natural gradient descent (also a random variable).

3Following Lee et al. [2019], we note that for discrete training dynamics, ∂
∂t
θt and ∂

∂t
fθt(·) above would be

replaced by θt+1 − θt and fθt+1(X )− fθt(X ), respectively, and every e−
η
n

Θnat·t term would be replaced by
I −

(
I − η

n
Θnat)t.
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Under Assumption 1 and under MSE loss, for gθt(x) = fθt(x)− y, the spectral norm || · ||2, and the
natural NTK at initialization, Θ̂nat

0 (x,X ), and at time t, Θ̂nat
t (x,X ), for any random initialization,

||glin
θt (x)− gθt(x)||2 ≤ ||fθ0(X )− Y||2

(√
λmax(G0(x))

λmin(G0(X ))

(
I − e−ησ

2t
)

+ ησ2

∫ t

0

(√
λmax(G0(x))

λmin(Gs(X ))
+
||J0(x)− Js(x)||2√

λmin(Gs(X ))

)
e−ησ

2sds
)
,

(19)

Proof. See Appendix E.

Corollary 3 (Prediction Error under Linearized Training Dynamics at Convergence). In the limit
of training time, as t → ∞, where limt→∞ gθt(x) = g?θ(x), is a function prediction when natural
gradient descent has reached an optimum, for any random initialization,

lim
t→∞

||glin
θt (x)− g?θ(x)||2 ≤ ||fθ0(X )− Y||2

(√
λmax(G0(x))

λmin(G0(X ))

+ ησ2 lim
t→∞

∫ t

0

(√
λmax(G0(x))

λmin(Gs(X ))
+
||J0(x)− Js(x)||2√

λmin(Gs(X ))

)
e−ησ

2sds
)
.

(20)

As can be seen from Corollary 3, the discrepancy between predictions under the linearized and the
true dynamics ||glin

θt
(x)− g?θt(x)||2 will be smallest when

√
λmax(G0(x))/λmin(G0(X )) is close to

unity and the ratio ||J0(x)− Js(x)||2/
√
λmin(Gs(X )) is minimal throughout training.

These bounds are functions of the DNN architecture and hyperparameters, the initialization scheme,
and the data and will be loose for most DNNs used in practice. While we know that the bounds are
tight in the infinite-width limit, future research may be able to elucidate for which finite-width DNN
architectures and initialization schemes linearized and non-linearized training dynamics converge to
similar distributions over functions.

5 Conclusion

We presented upper bounds on the discrepancy between predictions obtained from the solution to
the linearized training dynamics under natural gradient descent and predictions under non-linearized
training dynamics as a function of the DNN architecture and hyperparameters, the initialization
scheme, and the data.
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Supplementary Material

Appendix A Natural Gradient Descent

Consider a model of an output (target) distribution, p(y|fθ(x)), parameterized by a deep neural network (DNN),
fθ(x), and let L be a loss function which depends on p(y|fθ(x)). The natural gradient of L with respect to the
set of parameters θ is then given by

∇̂θL(θ) = −ηF (θ)−1∇θL(θ), (21)

where η is the learning rate, F (θ) is the Fisher information matrix, and ∇̂θ is the natural gradient operator. In
the following, we will assume the log-likelihood loss L(p(y|fθ(x))) =

∑
i log p(yi|fθ(xi)).

To obtain the Fisher information matrix F (θ), we first consider the Fisher information matrix conditioned on a
data point x, which, by the chain rule, is given by

F (θ|x) = Ep(y|fθ(x))[∇θ log p(y|fθ(x))>∇θ log p(y|fθ(x))]

= ∇θfθ(x)>F̂ (fθ(x))∇θfθ(x), (22)

where

F̂ (fθ(x))
def
= Ep(y|fθ(x))

[
∇f log p(y|fθ(x))>∇f log p(y|fθ(x))

]
(23)

is the Fisher information matrix of fθ(x) under the likelihood p(y|fθ(x)). We note that for a Gaussian likelihood
p(y|fθ(x)) = N (y|fθ(x), σ2), we have F̂ (fθ(x)) = 1

σ2 .

To obtain a Fisher information matrix that is independent of x, we follow Pascanu and Bengio [2014] and
introduce a distribution over the inputs, p(x), which from hereon we will assume to be the empirical distribution
of the data. This way, we are able to express the empirical Fisher information of the DNN parameters as

F̃ (θ) = Ep(x)[F (θ|x)] =
1

n

∑
i

∇θfθ(xi)>F̂ (fθ(xi))∇θfθ(xi). (24)

Using a Gaussian likelihood with variance σ2 (which, for maximum-likelihood estimation, is equivalent to
minimization under MSE loss), this expression simplifies to

F̃ (θ) = Ep(x)[F (θ|x)] =
1

nσ2

∑
i

∇θfθ(xi)>∇θfθ(xi). (25)

Note that, in practice, F̂ (fθ(x)) can also be estimated using the empirical distribution, yielding a biased
approximation of the Fisher information matrix given by˜̃F (θ) =

1

n

∑
i

∇θfθ(xi)>∇f log p(yi|fθ(xi))>∇f log p(yi|fθ(xi))∇θfθ(xi). (26)

Appendix B Derivation of the concatenated Fisher information matrix

First, consider the Fisher information matrix conditioned on a single data point, x, as before:

F (θ|x) = Ep(y|fθ(x))[∇θ log p(y|fθ(x))>∇θ log p(y|fθ(x))].

The empirical Fisher information matrix with the concatenated likelihood, p̃(Y|fθ(X )) =
∏
i p(yi|f(xi)), is

F̃ (θ) =
1

n

∑
i

F (θ|xi) (27)

=
1

n

∑
i

Ep(yi|fθ(xi))[∇θ log p(yi|fθ(xi))>∇θ log p(yi|fθ(xi))] (28)

=
1

n
Ep̃(Y|f(X ))[

∑
i

∇θ log p(yi|fθ(xi))>∇θ log p(yi|fθ(xi))] (29)

=
1

n
Ep̃(Y|f(X ))[∇θ log p̃(Y|f(X ))>∇θ log p̃(Y|f(X ))] (30)

=
1

n
∇θfθ(X )> Ep̃(Y|f(X ))

[
∇f log p̃(Y|f(X ))>∇f log p̃(Y|f(X ))

]
︸ ︷︷ ︸

def
=F̂ (fθ(X ))

∇θfθ(X ) (31)

=
1

n
∇θfθ(X )>F̂ (fθ(X ))∇θfθ(X ), (32)
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where we used the matrix identity A>A =
∑
iA
>
(i.)A(i.). As before, using a Gaussian likelihood with variance

σ2, F̂ (fθ(x)) = 1
σ2 , leads to the empirical Fisher information matrix

F̃ (θ) =
1

n
∇θfθ(X )>

1

σ2
∇θfθ(X ) (33)

=
1

nσ2
∇θfθ(X )>∇θfθ(X ). (34)

Appendix C Functional Gradient Descent and the Natural Neural Tangent
Kernel

We will now derive the natural NTK from natural gradient descent on the loss L for the case of a single data
point. Following Equation (3), the evolution of the parameters θ and the corresponding DNN output fθ(x) under
continuous-time natural gradient descent with learning rate η,

θ̇t = −η∇̂θL(θ) (35)

ḟθt(x) =
∂

∂θ
fθt(x)

∂

∂t
θt, (36)

then become

θ̇t =
∂θt
∂t

= −ηF−1(θ)∇θL(θ) (37)

= −ηF−1(θ)∇θfθt(x
′)>∇fL(fθt(x

′)) (38)

ḟθt(x) =
∂fθt
∂t

=
∂

∂θ
fθt(x)

∂

∂t
θt (39)

= −η∇θfθt(x)F−1(θ)∇θfθt(x
′)>∇fL(fθt(x

′)). (40)
The natural NTK at time t is then given by

Θnat
θt (x, x

′) = ∇θfθt(x)F−1(θt)∇θfθt(x
′)>, (41)

which describes the function-space training dynamics induced by optimizing the DNN parameters via natural
gradient descent on a single data point x′.

For a single training point x from the empirical distribution, using Equation (24), we obtain

Θnat
θt (x, x

′) = ∇θfθt(x)F−1(θt)∇θfθt(x
′)> (42)

= ∇θfθt(x)
(
∇θfθt(x

′)>F̂ (fθt(x
′))∇θfθt(x

′)
)−1

∇θfθt(x
′)>, (43)

and noting that, as before, under a Gaussian likelihood F̂ (fθ(x)) = 1
σ2 , the expression simplifies to

Θnat
θt (x, x

′) = σ2∇θfθt(x)
(
∇θfθt(x

′)>∇θfθt(x
′)
)−1

∇θfθt(x
′)>. (44)

Next, for a set of n training points X , we can express the training dynamics above as

θ̇t =
∂θt
∂t

= −ηF−1(θ)∇θL(θ) (45)

= −ηF−1(θ)∇θfθt(X )>∇fL(fθt(X )) (46)

ḟθt(x) =
∂fθt
∂t

=
∂

∂θ
fθt(x)

∂

∂t
θt (47)

= −η∇θfθt(x)F−1(θ)∇θfθt(X )>∇fL(fθt(X )). (48)
The natural NTK at time t is then given by

Θnat
θt (x,X ) = ∇θfθt(x)F−1(θt)∇θfθt(X )>, (49)

which describes the function-space training dynamics induced by optimizing the DNN parameters via natural
gradient descent on a set of training points X .

For a set of training points X from the empirical distribution, using Equation (27), we obtain

Θnat
θt (x,X ) = ∇θfθt(x)F−1(θt)∇θfθt(X )> (50)

= ∇θfθt(x)
(
∇θfθt(x

′)>F̂ (fθt(X ))∇θfθt(X )
)−1

∇θfθt(X )>, (51)

and noting that, as before, under a Gaussian likelihood F̂ (fθ(x)) = 1
σ2 , the expression simplifies to

Θnat
θt (x,X ) = σ2∇θfθt(x)

(
∇θfθt(X )>∇θfθt(X )

)−1

∇θfθt(X )>. (52)

10



Appendix D An Analytic Solution to Natural Gradient Descent

Assumption 1 (Network Overparameterization). Let fθt(·) be a DNN with |θt| = p, the number of network
parameters. Assume that nk ≤ p, that is, the DNN is overparameterized.

The empirical natural NTK is given by

Θ̂nat
t (x,X ) = nσ2∇θfθt(x)

(
∇θfθt(X )>∇θfθt(X )

)−1

∇θfθt(X )>. (53)

If the Jacobian is square and the natural NTK is evaluated on the training points X , the natural NTK is equal to
the (scaled) identity, that is,

Θnat def
= Θ̂nat

t (X ,X ) = nσ2Ink, (54)

For nk < p, the Fisher matrix is almost surely singular but can be computed via the generalized inverse [Bernac-
chia et al., 2018],

F̃ †(θt) = nσ2∇θfθt(X )>G−1
t (X )G−1

t (X )∇θfθt(X ), (55)

where Gt(X )
def
= ∇θfθt(X )∇θfθt(X )> ∈ Rnk×nk, and thus

Θnat def
= Θ̂nat

t (X ,X ) = ∇θfθt(X )
(
nσ2∇θfθt(X )>G−1

t (X )G−1
t (X )∇θfθt(X )

)
∇θfθt(X )> (56)

= nσ2Gt(X )G−1
t (X )G−1

t (X )Gt(X ) (57)

= nσ2Ink. (58)

Proposition 3 (Solution to Natural Gradient Descent Dynamics on Training Points). Under Assumption 1 and
under MSE loss, the function-space training dynamics under natural gradient descent on the training points X ,
ḟθt(X ), are linear in fθt and can be solved as

fθt(X ) =
(
I − e−

η
n

Θnat·t
)
Y + e−

η
n

Θnat·tfθ0(X ). (59)

Proof. Under Assumption 1, MSE loss, and nk ≤ p, the function-space training dynamics,

∂fθt(X )

∂t
= ḟθt(X ) = −η

(
nσ2∇θfθt(x)∇θfθt(X )>

(
∇θfθt(X )∇θfθt(X )>

)−1
)

︸ ︷︷ ︸
=Θnat

∇fL(fθt(X )) (60)

= −ηnσ2∇fL(fθt(X )), (61)

become linear in fθt(·) under MSE loss and can therefore be solved analytically without making any
linearization assumptions.

To solve the training dynamics, consider ḟθt(X ). For MSE loss, we get

ḟθt(X ) = −ηΘnat∇f
1

2n
||fθt(X )− Y||22 (62)

= −ηΘnat∇f
1

2n
(fθt(X )>fθt(X )− 2fθt(X )>Y − Y>Y) (63)

= − η
n

Θnat(fθt(X )− Y) (64)

= − η
n

Θnatfθt(X ) +
η

n
ΘnatY. (65)

Rearranging,

∂fθt(X )

∂t
+
η

n
Θnatfθt(X ) =

η

n
ΘnatY, (66)

we see that this is a first-order linear ordinary differential equation and can be solved analytically and has solution

fθt(X ) = Y + e−
η
n

Θnat·t c. (67)

For t = 0, the DNN at initialization, we get

fθ0(X ) = Y + e−
η
n

Θnat·0 c = Y + c ⇐⇒ c = fθ0(X )− Y, (68)
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and thus

fθt(X ) = Y + e−
η
n

Θnat·t(fθ0(X )− Y) (69)

=
(
I − e−

η
n

Θnat·t
)
Y + e−

η
n

Θnat·tfθ0(X ) (70)

=
(
I − e−

η
n

Θnat·t
)
Y + e−

η
n

Θnat·tfθ0(X ). (71)

To solve the training dynamics on an arbitrary point x, we can follow previous work [Lee et al., 2019] and
make a linearization assumption in conjunction with our solution to the training dynamics on the training points
derived above. In particular, we assume a linear evolution of the DNN.
Assumption 3 (Linearization). Assume that

f lin
θt (x)

def
= fθ0(x) +∇θfθt(x)

∣∣
θt=θ0

(θt − θ0). (72)

We then we get the linearized training dynamics on the training points X ,

∂(θt − θ0)

∂t
= −ηnσ2∇θfθt(X )

∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1

∇f linL(f lin
θt (X )) (73)

∂fθt(x)

∂t
= −ηnσ2∇θfθt(x)

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1

∇f linL(f lin
θt (X ))

(74)

= −η Θ̂nat
0 (x,X )∇f linL(f lin

θt (X ), (75)

where

Θ̂nat
0 (x,X )

def
= nσ2∇θfθt(x)

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1

(76)

is the natural NTK at initialization.
Proposition 4 (Solution to Linearized Natural Gradient Descent Dynamics on Training Points). Under Assump-
tion 1 and under MSE loss, the linearized function-space training dynamics under natural gradient descent on
the training points X , ḟ lin

θt (X ), can be solved as

f lin
θt (X ) =

(
I − e−

η
n

Θnat·t
)
Y + e−

η
n

Θnat·tfθ0(X ). (77)

Proof. Consider the linearized training dynamics under natural gradient descent, given by

∂fθt(x)

∂t
= −ηnσ2∇θfθt(x)

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1

∇f linL(f lin
θt (X ))

(78)

= −η Θ̂nat
0 (x,X )∇f linL(f lin

θt (X ), (79)

where

Θ̂nat
0 (x,X )

def
= nσ2∇θfθt(x)

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1

(80)

is the natural NTK at initialization.

The linearized function-space training dynamics on the training points then define a first-order ordinary differen-
tial equation, which can be solved analytically as

f lin
θt (X ) =

(
I − e−

η
n

Θnat·t
)
Y + e−

η
n

Θnat·tf lin
θ0(X ), (81)

where we used the fact that the natural NTK is the scaled identity.

Using the fact that f lin
θ0

(X ) = fθ0(X ), we can write the function-space solution as

f lin
θt (X ) =

(
I − e−

η
n

Θnat·t
)
Y + e−

η
n

Θnat·tfθ0(X ). (82)

Corollary 4. Throughout training via natural gradient descent, the solution to the linearized function-space
training dynamics evaluated on the training points, ḟ lin

θt (X ), is identical to the solution to the non-linearized
function-space training dynamics on the training points, ḟθt(X ), that is,

f lin
θt (X ) = fθt(X ). (83)
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Proof. The result follows immediately from Proposition 1 and Proposition 4.

Proposition 5 (Parameter-space Solution to Linearized Natural Gradient Descent Dynamics). Under Assump-
tion 1 and under MSE loss, the linearized training dynamics under natural gradient descent on the DNN
parameters can be solved analytically as

θt =
(
I − e−

η
n

Θnat·t
)[(

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1
)

(fθ0(X )− Y) + θ0

]
,

(84)

where we used the fact that the natural NTK is constant in fθt and θt.

Proof. Consider the linearized training dynamics on the DNN parameters, θ̇t,

∂(θt − θ0)

∂t
= −ηnσ2∇θf lin

θt (X )
∣∣>
θt=θ0

(
∇θf lin

θt (X )
∣∣
θt=θ0

∇θf lin
θt (X )

∣∣>
θt=θ0

)−1

∇f linL(f lin
θt (X )), (85)

which defines a first-order ordinary differential equation and can be solved analytically as

θt =
(
I − e−

η
n

Θnat·t
)[(

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1
)

(fθ0(X )− Y) + θ0

]
.

(86)

Proposition 6 (Solution to Linearized Natural Gradient Descent Dynamics on Test Points). Under Assumption 1
and under MSE loss, the linearized function-space training dynamics under natural gradient descent on a test
point x, ḟ lin

θt (x), can be solved as

f lin
θt (x) = fθ0(x)

− σ2∇θfθt(x)
∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1 (
I − e−ησ

2t
)
fθ0(X )

+ σ2∇θfθt(x)
∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1 (
I − e−ησ

2t
)
Y.

(87)

Proof. Consider the linearized training dynamics on a test point, x, under MSE loss,

∂fθt(x)

∂t
= −ηnσ2∇θfθt(x)

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1

∇f linL(f lin
θt (X ))

(88)

= −ηΘ̂nat
0 (x,X )∇f linL(f lin

θt (X )) (89)

= − η
n

Θ̂nat
0 (x,X )(f lin

θt (X )− Y), (90)

which defines a first-order ordinary differential equation and can be solved analytically.

Using the fact that f lin
θ0

(x) = fθ0(x) and that, by Corollary 1, f lin
θt (X ) = fθt(X ), the solution to the linearized

training dynamics of natural gradient descent is given by

f lin
θt (x) = fθ0(x) +

1

n
Θ̂nat

0 (x,X )
(
I − e−

η
n

Θnat·t
)

(Y − fθ0(X )) (91)

= fθ0(x) +
1

n
Θ̂nat

0 (x,X )
(
I − e−

η
n

Θnat·t
)

(Y − fθ0(X )) (92)

= fθ0(x)− 1

n
Θ̂nat

0 (x,X )
(
I − e−

η
n

Θnat·t
)
fθ0(X ) +

1

n
Θ̂nat

0 (x,X )
(
I − e−

η
n

Θnat·t
)
Y (93)

= fθ0(x)

− σ2∇θfθt(x)
∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1 (
I − e−ησ

2t
)
fθ0(X )

+ σ2∇θfθt(x)
∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1 (
I − e−ησ

2t
)
Y.

(94)
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Corollary 5. In the limit of training time, as t → ∞, the solution to the linearized training dynamics under
natural gradient descent tends to

lim
t→∞

f lin
θt (x) = fθ0(x) +

1

n
Θ̂nat

0 (x,X ) (Y − fθ0(X )) , (95)

where

Θ̂nat
0 (x,X )

def
= nσ2∇θfθt(x)

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

(
∇θfθt(X )

∣∣
θt=θ0

∇θfθt(X )
∣∣>
θt=θ0

)−1

. (96)

Appendix E Discrepancy between function-space predictions under
linearized and non-linearized training dynamics

In Appendix D, we made an explicit linearization assumption about the training dynamics under natural
gradient descent, the analytical solution of which may be different from the (intractable) solution to the training
dynamics under non-linearized natural gradient descent. Below, we derive an upper bound on the function-space
discrepancy on a test point between the analytic solution to the linearized training dynamics under natural
gradient descent and the function obtained by performing natural gradient descent on the training data until
convergence.

Assumption 4 (Positive Definiteness of the Gram Matrix). Let nk ≤ p, and define the Jacobian at initialization
and at time step t during training as J0(x)

def
= ∇θfθt(x)

∣∣
θt=θ0

∈ Rnk×p and Jt(x)
def
= ∇θfθt(x) ∈ Rnk×p,

respectively, and let G0(x) = J0(x)J0(x)> ∈ Rnk×nk and Gt(x) = Jt(x)Jt(x)> ∈ Rnk×nk be the
corresponding Gram matrices. Assume that Gt(x) = Jt(x)Jt(x)> is positive definite for all t ≥ 0.

Lemma 2 (Natural Neural Tangent Kernel Bound). Let Θ̂nat
0 (x,X ) and Θ̂nat

t (x,X ) be the natural NTK at
initialization and at some time step t during training, respectively, and let λmax(Gt(x)) be the largest eigenvalue
of the Gram matrix for t ≥ 0. Under Assumption 1, for any random initialization,

1

nσ2
||Θ̂nat

0 (x,X )− Θ̂nat
t (x,X )||2 ≤

√
λmax(G0(x))

λmax(G0(X ))
+

√
λmax(G0(x))

λmin(Gt(X ))
+
||J0(x)− Js(x)||2√

λmin(Gt(X ))
(97)

Proof. For ease of notation, we define Jt(x)
def
= ∇θfθt(x) and J0(x)

def
= ∇θfθt(x)

∣∣
θt=θ0

. We then have

Θ̂nat
t (x,X ) = nσ2Jt(x)Jt(X )>

(
Jt(X )Jt(X )>

)−1

(98)

and

Θ̂nat
0 (x,X ) = nσ2J0(x)J0(X )>

(
J0(X )J0(X )>

)−1

, (99)

and thus

1

nσ2
||Θ̂nat

0 (x,X )− Θ̂nat
t (x,X )||2 (100)

=
∣∣∣∣∣∣J0(x)J0(X )>

(
J0(X )J0(X )>

)−1

− Jt(x)Jt(X )>
(
Jt(X )Jt(X )>

)−1 ∣∣∣∣∣∣
2
. (101)

Adding and subtracting J0(x)Jt(X )>
(
Jt(X )Jt(X )>

)−1
, we get

1

nσ2
||Θ̂nat

0 (x,X )− Θ̂nat
t (x,X )||2

=
∣∣∣∣∣∣J0(x)J0(X )>

(
J0(X )J0(X )>

)−1

− J0(x)Jt(X )>
(
Jt(X )Jt(X )>

)−1

+ J0(x)Jt(X )>
(
Jt(X )Jt(X )>

)−1

− Jt(x)Jt(X )>
(
Jt(X )Jt(X )>

)−1 ∣∣∣∣∣∣
2
,

(102)

which allows us to separate Jacobians evaluated on training and on test points, that is,

1

nσ2
||Θ̂nat

0 (x,X )− Θ̂nat
t (x,X )||2 =

∣∣∣∣∣∣J0(x)

(
J0(X )>

(
J0(X )J0(X )>

)−1

− Jt(X )>
(
Jt(X )Jt(X )>

)−1
)

− (Jt(x)− J0(x)) Jt(X )>
(
Jt(X )Jt(X )>

)−1 ∣∣∣∣∣∣
2
.

(103)
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By applying the triangle inequality, we can now establish an upper bound,

1

nσ2
||Θ̂nat

0 (x,X )− Θ̂nat
t (x,X )||2

≤
∣∣∣∣∣∣J0(x)

(
J0(X )>

(
J0(X )J0(X )>

)−1

− Jt(X )>
(
Jt(X )Jt(X )>

)−1
) ∣∣∣∣∣∣

2

+
∣∣∣∣∣∣ (Jt(x)− J0(x))

(
Jt(X )>

(
Jt(X )Jt(X )>

)−1
) ∣∣∣∣∣∣

2

(104)

≤ ||J0(x)||2
∣∣∣∣∣∣J0(X )>

(
J0(X )J0(X )>

)−1

− Jt(X )>
(
Jt(X )Jt(X )>

)−1 ∣∣∣∣∣∣
2

+ ||J0(x)− Jt(x)||2
∣∣∣∣∣∣Jt(X )>

(
Jt(X )Jt(X )>

)−1 ∣∣∣∣∣∣
2

(105)

≤ ||J0(x)||2
(∣∣∣∣∣∣J0(X )>

(
J0(X )J0(X )>

)−1 ∣∣∣∣∣∣
2

+
∣∣∣∣∣∣Jt(X )>

(
Jt(X )Jt(X )>

)−1 ∣∣∣∣∣∣
2

)
+ ||J0(x)− Jt(x)||2

∣∣∣∣∣∣Jt(X )>
(
Jt(X )Jt(X )>

)−1 ∣∣∣∣∣∣
2
,

(106)

and noting that the spectral norm || · ||2 of a matrix A is given by its largest singular value, σmax(A), or, equiva-
lently, by the square root of the largest eigenvalue of A>A, λmax(A>A), we define Gt(x) = Jt(x)Jt(x)> ∈
Rnk×nk for a general x and write∣∣∣∣∣∣Jt(x)>

(
Jt(x)Jt(x)>

)−1 ∣∣∣∣∣∣
2

= σmax

(
Jt(x)>

(
Jt(x)Jt(x)>

)−1
)

(107)

=

√
λmax

((
Jt(x)> (Jt(x)Jt(x)>)−1)> (Jt(x)> (Jt(x)Jt(x)>)−1))

(108)

=
√
λmax

(
(Jt(x)Jt(x)>)−1) (109)

=
√
λmax(Gt(x)−1) (110)

=
1√

λmin(Gt(x))
(111)

and, by definition,

||Jt(x)||2 =
√
λmax(Gt(x)) ∀t. (112)

We can now express the bound above as

1

nσ2
||Θ̂nat

0 (x,X )− Θ̂nat
t (x,X )||2 ≤

√
λmax(G0(x))

(
1√

λmin(G0(X ))
+

1√
λmin(Gt(X ))

)

+ ||J0(x)− Jt(x)||2
1√

λmin(Gt(X ))

=

√
λmax(G0(x))

λmin(G0(X ))
+

√
λmax(G0(x))

λmin(Gt(X ))
+
||J0(x)− Js(x)||2√

λmin(Gt(X ))

(113)

concluding the proof.

Theorem 2 (Prediction Error under Linearized Training Dynamics). Let (x, y) be an input-output test set pair,
X and Y the training input and output sets, respectively, η the learning rate, σ2 the variance of the Gaussian
likelihood, f lin

θt (x) the function predictions from the analytical solution to the linearized training dynamics under
natural gradient descent (a random variable), and fθt(x) the function predictions obtained from running natural
gradient descent (also a random variable). Under Assumption 1, and under MSE loss, for gθt(x) = fθt(x)− y,
the spectral norm || · ||2, and the natural NTK at initialization, Θ̂nat

0 (x,X ), and at time t, Θ̂nat
t (x,X ), for any

random initialization,

||glin
θt(x)− gθt(x)||2 ≤ ||fθ0(X )− Y||2

(√
λmax(G0(x))

λmin(G0(X ))

(
I − e−ησ

2t
)

+ ησ2

∫ t

0

(√
λmax(G0(x))

λmin(Gs(X ))
+
||J0(x)− Js(x)||2√

λmin(Gs(X ))

)
e−ησ

2sds
)
,

(114)
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Proof. Consider

∂

∂t

(
glin
θt(x)− gθt(x)

)
= − η

n
Θ̂nat

0 (x,X )glin
θt(X )−

(
− η
n

Θ̂nat
t (x,X )gθt(X )

)
(115)

= − η
n

Θ̂nat
0 (x,X )glin

θt(X ) +
η

n
Θ̂nat
t (x,X )glin

θt(X )

− η

n
Θ̂nat
t (x,X )glin

θt(X ) +
η

n
Θ̂nat
t (x,X )gθt(X )

(116)

= − η
n

(
Θ̂nat

0 (x,X )− Θ̂nat
t (x,X )

)
glin
θt(X ) +

η

n
Θ̂nat
θt (x,X )

(
gθt(X )− glin

θt(X ))
)

︸ ︷︷ ︸
=0

(117)

= − η
n

(
Θ̂nat

0 (x,X )− Θ̂nat
t (x,X )

)
glin
θt(X ), (118)

where the last line follows from the fact that, by Corollary 1, on the training data, f lin
θs(X ) = fθs(X ). Integrating

with respect to t, taking the norm, and repeatedly applying the triangle inequality then yields

||glin
θt(x)− gθt(x)||2 =

η

n

∣∣∣∣∣∣∣∣ ∫ t

0

(
Θ̂nat

0 (x,X )− Θ̂nat
s (x,X )

)
glin
θs(X )∂s

∣∣∣∣∣∣∣∣
2

(119)

≤ η

n

∫ t

0

∣∣∣∣∣∣ (Θ̂nat
0 (x,X )− Θ̂nat

s (x,X )
)
glin
θs(X )

∣∣∣∣∣∣
2
ds (120)

≤ η

n

∫ t

0

||Θ̂nat
0 (x,X )− Θ̂nat

s (x,X )||2 ||glin
θs(X )||2ds. (121)

Noting that

||glin
θs(X )||2 =

∣∣∣∣∣∣ (I − e− ηnΘnat·s
)
Y + e−

η
n

Θnat·sfθ0(X )− Y
∣∣∣∣∣∣

2
(122)

=
∣∣∣∣e− ηnΘnat·s (fθ0(X )− Y)

∣∣∣∣
2

(123)

= e−
η
n

Θnat·s||fθ0(X )− Y||2, (124)

we can rewrite the above bound as

||glin
θt(x)− gθt(x)||2 ≤

η

n
||fθ0(X )− Y||2

∫ t

0

||Θ̂nat
0 (x,X )− Θ̂nat

s (x,X )||2e−
η
n

Θnat·s∂s. (125)

By Lemma 1, we then have

||glin
θt(x)− gθt(x)||2 ≤

η

n
||fθ0(X )− Y||2

∫ t

0

||Θ̂nat
0 (x,X )− Θ̂nat

s (x,X )||2e−
η
n

Θnat·sds (126)

≤ η

n
||fθ0(X )− Y||2

∫ t

0

nσ2

(√
λmax(G0(x))

λmin(G0(X ))

+

√
λmax(G0(x))

λmin(Gs(X ))
+
||J0(x)− Js(x)||2√

λmin(Gs(X ))

)
e−

η
n

Θnat·sds

(127)

= η ||fθ0(X )− Y||2
(
σ2

∫ t

0

√
λmax(G0(x))

λmin(G0(X ))
e−

η
n

Θnat·sds

+ σ2

∫ t

0

√
λmax(G0(x))

λmin(Gs(X ))
+
||J0(x)− Js(x)||2√

λmin(Gs(X ))
e−

η
n

Θnat·sds
)
.

(128)
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Using the fact that Θnat ≈ nσ2Ink, we then have

||glin
θt(x)− gθt(x)||2 ≤ η ||fθ0(X )− Y||2

(
σ2

√
λmax(G0(x))

λmin(G0(X ))

∫ t

0

e−ησ
2sds

+ σ2

∫ t

0

(√
λmax(G0(x))

λmin(Gs(X ))
+
||J0(x)− Js(x)||2√

λmin(Gs(X ))

)
e−ησ

2sds
)

(129)

= η||fθ0(X )− Y||2
(

1

η

√
λmax(G0(x))

λmin(G0(X ))

(
I − e−ησ

2t
)

+ σ2

∫ t

0

(√
λmax(G0(x))

λmin(Gs(X ))
+
||J0(x)− Js(x)||2√

λmin(Gs(X ))

)
e−ησ

2sds
)

(130)

= ||fθ0(X )− Y||2
(√

λmax(G0(x))

λmin(G0(X ))

(
I − e−ησ

2t
)

+ ησ2

∫ t

0

(√
λmax(G0(x))

λmin(Gs(X ))
+
||J0(x)− Js(x)||2√

λmin(Gs(X ))

)
e−ησ

2sds
)
.

(131)
This concludes the proof.

Corollary 6 (Prediction Error under Linearized Training Dynamics at Convergence). In the limit of training
time, as t→∞, where limt→∞ gθt(x) = g?θ (x), is a function prediction when natural gradient descent has
reached an optimum, for any random initialization,

lim
t→∞

||glin
θt(x)− g?θ (x)||2 ≤ ||fθ0(X )− Y||2

(√
λmax(G0(x))

λmin(G0(X ))

+ ησ2 lim
t→∞

∫ t

0

√
λmax(G0(x)) + ||J0(x)− Js(x)||2√

λmin(Gs(X ))
e−ησ

2sds
)
.

(132)

Assumption 5 (Local Lipschitzness). Assume that
||J0(x)− Jt(x)||2 ≤ ||J0(x)||2, (133)

which can be viewed as assuming a type of local Lipschitzness
Assumption 6 (Increasing Maximum Eigenvalue of the Jacobian). Assume that

||J0(X )||2 ≤ ||Jt(X )||2 ∀t ≥ 0, (134)
which corresponds to the largest eigenvalues of the Jacobian increasing during training.
Corollary 7. Under Assumption 5 and Assumption 6, in the limit of training time, as t → ∞, where
limt→∞ gθt(x) = g?θ (x), is a function prediction when natural gradient descent has reached an optimum, for
any random initialization,

lim
t→∞

||glin
θt(x)− g?θ (x)||2 ≤3 ||fθ0(X )− Y||2

√
λmax(G0(x))

λmin(G0(X ))
. (135)

Proof. Under Assumption 5 and Assumption 6, we have

lim
t→∞

||glin
θt(x)− g?θ (x)||2 (136)

≤||fθ0(X )− Y||2
(√

λmax(G0(x))

λmin(G0(X ))
+ ησ2 lim

t→∞

∫ t

0

2

√
λmax(G0(x))

λmin(G0(X ))
e−ησ

2sds
)

(137)

=||fθ0(X )− Y||2
(√

λmax(G0(x))

λmin(G0(X ))
+ 2ησ2

√
λmax(G0(x))

λmin(G0(X ))
lim
t→∞

∫ t

0

e−ησ
2sds

)
(138)

=||fθ0(X )− Y||2
(√

λmax(G0(x))

λmin(G0(X ))
+ 2

√
λmax(G0(x))

λmin(G0(X ))
lim
t→∞

(
1− e−ησ

2t

))
(139)

=3 ||fθ0(X )− Y||2

√
λmax(G0(x))

λmin(G0(X ))
. (140)
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