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Summary

•We investigate whether BNNs are robust to adversarial at-
tacks and able to detect adversarial examples.

•We identify various conceptual and experimental errors in
previous works that claim inherent adversarial robustness.

•We show that unsophisticated attacks like PGD-variants
could break BNNs in three tasks: (1) label prediction under
the posterior predictive mean, (2) adversarial example detec-
tion with Bayesian predictive uncertainty, and (3) semantic
shift detection.

Background

Bayesian Inference Methods

We evaluate four Bayesian inference methods:
•Hamiltonian Monte Carlo (HMC, the gold standard)
•Monte Carlo Dropout (MCD)
•Parameter-Space Variational Inference (mean-field VI)
•Function-Space Variational Inference (FSVI)

Adversarial Robustness

•Adversarial Objective for generating adversarial examples,

η = argmax∥η∥∞≤ϵL(f (x + η), y), (1)

•Attacking stochastic neural network with expected gradient
ascent, FGSM with one step and PGD with multiple steps,

x̃ = x + ϵ · sign (∇xL(Ef (x), y)) . (2)

In the standard FGSM and PGD attack, L is the standard
cross-entropy loss. We also attack both uncertainty and
cross-entropy with PGD+ attack.

•We follow standard adversarial perturbation ϵ used in the
robustness community. MNIST(0.3), FashionMNIST(0.1),
and CIFAR-10(8/255).

Evaluating Previous Claims

[1, 2, 3, 4] present empirical evidence supporting the superior
robustness of BNNs in prediction and AE detection. However,
upon careful inspection, we found various implementation er-
rors, such as double-softmax application (oversmoothing) and
vanishing gradients caused by numerical instabilities. After
correcting these issues, the previously claimed advantages in
BNN robustness disappear.

Empirical Evaluation
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Fig 1. Summary statistics for Fashion-MNIST with a four-layer CNN. For
prediction, the y-axis is the accuracy and for AE detection and OOD detec-
tion, the y-axis is the averaged selective accuracy. We could successfully
attack all three tasks with adversarial predictive accuracy close to zero.
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Fig 2. AE detection statistics for all four methods on MNIST with a
four-layer CNN. We mix clean samples and adversarial samples together
and report the selective accuracy. A model that randomly rejects samples
would yield a flat line around 50%. Interestingly, most of the PGD curves
lie below this 50% line, suggesting that the adversarial examples deceive
the model to reject clean samples, without directly targeting the model’s
uncertainty. Furthermore, the PGD+ method could push the curves closer
to the lower bound (the dashed line) when attacking the uncertainty esti-
mation.
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Fig 1. Out-of-distribution detection for CIFAR-10 (Fashion-MNIST) with
a ResNet-18. We perform PGD attack on the total uncertainty only for the
out-of-distribution (OOD) samples. We are the first to show that OOD
detection with BNNs is equally vulnerable: minor perturbations applied
to OOD samples cause the model to primarily classify in-distribution (ID)
samples as out-of-distribution.

Discussion

•Even BNNs trained with HMC, the gold standard for
Bayesian inference in stochastic neural networks, do not
withstand adversarial attacks and exhibit a significant
deterioration in robust accuracy, average selective accuracy,
and semantic shift detection.

•Our investigation of HMC was limited to small CNNs.
Investigating the robustness of larger BNNs trained with
HMC remains an open question.

•We hope to draw the attention of the Bayesian learning
community toward devising Bayesian defenses against
adversarial attacks.
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