

ON SIGNAL-TO-NOISE RATIO ISSUES IN VARIATIONAL INFERENCE FOR DEEP GAUSSIAN PROCESS Tim G. J. Rudner[†]*, Oscar Key[‡]*, Yarin Gal[†], Tom Rainforth[†] [†] University of Oxford [‡] University College London ^{*} Equal contribution. Corresponding author: tim.rudner@cs.ox.ac.uk. 🎾 @timrudner

TL;DR

- We show that the gradient estimates used in training Deep GPs (DGPs) with importance-weighted variational inference are susceptible to signal-to-noise ratio (SNR) issues.
- •We demonstrate both theoretically and empirically that the SNR of the gradient estimates Ξ for the latent variable's varia- $\overset{\circ}{\mathbb{B}}^{.2}$ tional parameters decreases as the number of importance samples *increases*.

• To address this pathology, adapt doubly-reparameterized gradient estimators to DGP models and show that the resultant estimators completely remedy the SNR issue, thereby providing more reliable training and improved performance.

Model & Inference

$p(y_n \mid f^{(1)}, f^{(2)}, z_n; x_n) = \mathcal{N}(y \mid f^{(2)}(f^{(1)}([x, z_n]))$
$\mathcal{L}_{K} \stackrel{\text{def}}{=} \mathbb{E} \left[\sum_{n \in \mathbb{Z}} \log \frac{1}{K} \sum_{k=1}^{K} \frac{\mathcal{F}(x_{n}, y_{n}, f_{k}^{(1)}, z_{n})}{q_{\phi}(z_{n,k})} \right]$
$-\sum_{\ell=1}^{2} D_{KL} \left(q(f^{(\ell)}) \parallel p(f^{(\ell)}) \right)$
where $\mathcal{F}(x_n, y_n, f_k^{(1)}, z_{n,k})$ $\stackrel{\text{def}}{=} \exp\left(\mathbb{E}_{a(f^{(2)})} \left[\log p(y_n \mid f^{(2)}, f_k^{(2)})\right]\right)$
$\Delta_{n,M,K}^{DGP}(\phi) \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^{M} \nabla_{\phi} \log \frac{1}{K} \sum_{k=1}^{K} w_{n,m,k}$
where $w_{n,m,k} \stackrel{\text{def}}{=} \frac{\mathcal{F}(x_n, y_n, f_{m,k}^{(1)}, z_{n,m,k}) p(x_n, y_n, f_{m,k}^{(1)}, z_{n,m,k}) p(x_n, y_n, y_n, y_n, y_n, y_n, y_n, y_n, y$
$z_{n,m,k} \sim q_{\phi}(z_n), f_{m,k}^{(1)} \sim q(f^{(1)}).$

SNR Issues in Deep GPs

$$)), \sigma^{2}I_{P}),$$
$$(1)$$

$$^{1)},z_{n,k})\Big]\Big)\,,$$

(2)

 $z_{n,m,k}$)

Theorem 1 (Asymptotic SNR in IWVI for DGPs). Let $w_{n,m,k}$ be as defined as in $\hat{Z}_{n,m,K} \stackrel{\text{\tiny def}}{=} \frac{1}{K} \sum_{k=1}^{K} w_{n,m,k}$. Assume that when M = K = 1, the expectation and variance of the gradients estimates in Equation (2) are non-zero, and that the first four moments of $w_{n,1,1}$ and $\nabla_{\phi} w_{n,1,1}$ are all finite and that their variances are also non-zero. Then the signal-to-noise ratio of each $\Delta_{n,M,K}^{DGP}(\phi)$ converges at the following rate

where $Z_n \stackrel{\text{\tiny def}}{=} \mathbb{E}[w_{n,1,1}]$ is a lower bound on the marginal likelihood of the nth data point.

Figure 1: SNR of reparameterization (top row) and doubly reparameterized (bottom row) gradient estimates for shallow GPs and DGPs of 2-4 layers on a selection of real-world datasets. The labels on the x-axes correspond to the depths of the models. The bars for each depth show the SNR for increasing numbers of importance samples, K = 1, 10, 100, 1000, from left to right. In the top row, for (D)GPs of any depth, larger K tends to correspond to lower SNRs. In the bottom row, for (D)GPs of any depth, larger K tends to correspond to higher SNRs. Note the difference in y-axis scales across plots in the bottom row.

 \rightarrow The SNR issue is confirmed theoretically and empirically.

Full paper: https://arxiv.org/abs/2011.00515

Figure 2: Comparison of predictive performance of 2-layer DGPs with a learned variational distribution over the latent variable (left of each pair, blue) and a variational distribution over the latent variable fixed to the prior (right of each pair, green). The shaded area shows the range of test log-likelihoods over 10 train-test splits, with the width indicating the distribution over the range. The central horizontal lines in each plot show the mean.

Effect of SNR Issue

The more non-Gaussian the data

- the larger the improvement in performance from learning $q_{\phi}(z)$.
- the larger the improvement in performance from fixing the SNR issue.

Table 1. Comparison of predictive performance of two-layer DGPs trained with REG and DREG estimators. For each dataset, we provide the mean ELBOs on the training dataset and log-likelihoods on the test dataset over 20 random train-test splits as well as the corresponding standard errors. Boldface indicates higher means. The rightmost column shows p-values for one-sided Wilcoxon signed-rank hypothesis tests on the log-likelihoods.

	Train ELBO ($K = 50$)				Test log-likelihood				
Dataset	E REG		DREG		REG		DREG		Wilcoxon Test
	Mean	SE	Mean	SE	Mean	SE	Mean	SE	p-value
forest	-97.56	(11.04)	-92.53	(10.42)	0.59	(0.08)	0.63	(0.08)	0.1%
solar	1657.41	(27.56)	1707.75	(42.20)	2.33	(0.17)	2.57	(0.11)	2.8%
pol	34610.49	(66.18)	34665.08	(70.34)	2.99	(0.01)	2.99	(0.01)	24.7%
power	1510.50	(10.62)	1515.60	(10.16)	0.21	(0.01)	0.21	(0.01)	67.3%
winewhite	-4701.26	(4.92)	-4703.14	(4.98)	-1.11	(0.01)	-1.11	(0.01)	50.0%
winered	447.91	(249.81)	314.75	(216.32)	0.57	(0.27)	0.61	(0.20)	41.1%
	Across Datasets:							1.2%	

This work is based on Salimbeni et al. Deep Gaussian Processes with Importance-Weighted Variational Inference. ICML, 2019.

Quantifying & Fixing the SNR Pathology

butions of 2-layer DGPs with a learned variational distribution over the latent variable (top row, blue) and a variational distribution over the latent variable fixed to the prior (bottom row, green) for randomly selected test points from the 'forest' and 'winewhite' datasets.

Code: https://github.com/timrudner/snr_issues_in_deep_gps