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TL;DR

•We show that the gradient estimates used in training Deep
GPs (dgps) with importance-weighted variational inference
are susceptible to signal-to-noise ratio (snr) issues.

•We demonstrate both theoret-
ically and empirically that the
snr of the gradient estimates
for the latent variable’s varia-
tional parameters decreases as
the number of importance sam-
ples increases. 0 50 100
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•To address this pathology, adapt doubly-reparameterized
gradient estimators to dgp models and show that the resul-
tant estimators completely remedy the snr issue, thereby
providing more reliable training and improved performance.

Model & Inference
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SNR Issues in Deep GPs

Theorem 1 (Asymptotic snr in iwvi for dgps).Let wn,m,k
be as defined as in Ẑn,m,K

def
= 1
K

∑K
k=1wn,m,k. Assume that

when M = K = 1, the expectation and variance of the gradi-
ents estimates in Equation (2) are non-zero, and that the first
four moments of wn,1,1 and ∇φwn,1,1 are all finite and that
their variances are also non-zero. Then the signal-to-noise
ratio of each ∆DGP

n,M,K(φ) converges at the following rate
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where Zn
def
= E[wn,1,1] is a lower bound on the marginal like-

lihood of the nth data point.
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Figure 1: snr of reparameterization (top row) and doubly reparameterized (bot-
tom row) gradient estimates for shallow gps and dgps of 2-4 layers on a selection of
real-world datasets. The labels on the x-axes correspond to the depths of the models.
The bars for each depth show the snr for increasing numbers of importance samples,
K = 1, 10, 100, 1000, from left to right. In the top row, for (d)gps of any depth, larger
K tends to correspond to lower snrs. In the bottom row, for (d)gps of any depth,
larger K tends to correspond to higher snrs. Note the difference in y-axis scales across
plots in the bottom row.

→ The snr issue is confirmed theoretically and empirically.

Full paper: https://arxiv.org/abs/2011.00515

Quantifying & Fixing the SNR Pathology
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Figure 2: Comparison of predictive performance of 2-layer dgps with a learned vari-
ational distribution over the latent variable (left of each pair, blue) and a variational
distribution over the latent variable fixed to the prior (right of each pair, green). The
shaded area shows the range of test log-likelihoods over 10 train–test splits, with the
width indicating the distribution over the range. The central horizontal lines in each plot
show the mean.

Effect of SNR Issue

The more non-Gaussian the data
• the larger the improvement

in performance from learning
qφ(z).

• the larger the improvement
in performance from fixing
the snr issue.
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Figure 3: Marginal predictive distri-
butions of 2-layer dgps with a learned
variational distribution over the latent
variable (top row, blue) and a variational
distribution over the latent variable fixed
to the prior (bottom row, green) for ran-
domly selected test points from the ‘for-
est’ and ‘winewhite’ datasets.

Table 1. Comparison of predictive performance of two-layer dgps trained with reg and
dreg estimators. For each dataset, we provide the mean elbos on the training dataset
and log-likelihoods on the test dataset over 20 random train-test splits as well as the
corresponding standard errors. Boldface indicates higher means. The rightmost column
shows p-values for one-sided Wilcoxon signed-rank hypothesis tests on the log-likelihoods.

Train elbo (K = 50) Test log-likelihood
Dataset reg dreg reg dreg Wilcoxon Test

Mean SE Mean SE Mean SE Mean SE p-value

forest -97.56 (11.04) -92.53 (10.42) 0.59 (0.08) 0.63 (0.08) 0.1%
solar 1657.41 (27.56) 1707.75 (42.20) 2.33 (0.17) 2.57 (0.11) 2.8%

pol 34610.49 (66.18) 34665.08 (70.34) 2.99 (0.01) 2.99 (0.01) 24.7%
power 1510.50 (10.62) 1515.60 (10.16) 0.21 (0.01) 0.21 (0.01) 67.3%

winewhite -4701.26 (4.92) -4703.14 (4.98) -1.11 (0.01) -1.11 (0.01) 50.0%
winered 447.91 (249.81) 314.75 (216.32) 0.57 (0.27) 0.61 (0.20) 41.1%

Across Datasets: 1.2%

Code: https://github.com/timrudner/snr issues in deep gps

This work is based on Salimbeni et al. Deep Gaussian Processes with Importance-Weighted
Variational Inference. ICML, 2019.
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