Drug Discovery under Covariate Shift with **Domain-Informed Prior Distributions over Functions**

Leo Klarner¹, Tim G. J. Rudner¹, Michael Reutlinger², Torsten Schindler², Garrett. M. Morris¹, Charlotte M. Deane¹, Yee Whye Teh¹

¹ Department of Statistics, University of Oxford, ² Pharma Research and Early Development, Roche

Drug Discovery under Covariate Shift

- Machine learning models that can reliably predict **clinically relevant molecular properties** have the potential to accelerate key steps in early-stage drug discovery
- In practical settings, predictions are often most useful for **novel compounds** that are **structurally or functionally dissimilar** to known molecules (a)
- Standard deep learning algorithms perform poorly in this **out-of-distribution** regime, yielding both **incorrect and highly overconfident** predictions (b)
- We propose **Q-SAVI**: a framework to specify **explicit prior knowledge** of drug-like chemical space beyond (a) as a **regularizing prior distribution** over the **induced function space** of a neural network (c)

Q-SAVI: A Framework to Specify Explicit Prior Knowledge

- Encoding domain-knowledge as a prior distribution over the parameters of a neural network is difficult
- Instead, we consider the **function space** induced by a given neural network architecture (evaluated at a set of **context points**)
- We then rephrase the **inference problem** of learning a distribution over parameters as learning a distribution over the functions these parameters encode
- This enables us to formulate a prior distribution over the space of **Q**uantitative Structure-Activity mappings and perform Variational Inference in the resulting probabilistic model, a framework we refer to as **Q-SAVI**
- Q-SAVI allows us to restrict a neural network's hypothesis space by enabling the specification of explicit, domain-informed prior knowledge by encoding:
 - problem-specific modeling preferences in the **function-space prior** itself
 - and providing set of (potentially unlabelled) **context points** it is enforced at (2)

Results & Conclusion

• We compare Q-SAVI to a range of **self-supervised pre-training** and **domain adapation techniques**, outperforming all of them in terms of predictive accuracy and most of them in terms of calibration

Dee \overline{O} GIN
Image: Constraint of the second se

 Imbuing neural networks with contextualized prior knowledge of the data-generating process substantially improves their performance in extrapolative, out-of-distribution regimes

• Q-SAVI also presents researchers with a transparent and probabilistically principled framework to encode additional, problem-infoded modeling preferences, such as synthesizability, patentability, likely adverse side-effects, etc.

Spectral split.

Model & Featurization		Spectral Split		Weight Split	
		ECFP	rdkitFP	ECFP	rdkitFP
AUC-ROC (\uparrow)	Logistic Regression	$.583 {\pm} .000$	$.551 {\pm} .000$	$.626 {\pm} .000$	$.632 {\pm} .000$
	Random Forest	$.576 {\pm} .009$	$.552 {\pm} .006$	$.592 {\pm} .006$	$.567 {\pm} .004$
	MLP	$.574 {\pm} .006$	$.571 {\pm} .003$	$.614 {\pm} .004$	$.577 {\pm} .005$
	Deep Ensemble	$.589 {\pm} .006$	$.571 {\pm} .002$	$.644 {\pm} .001$	$.594 {\pm} .002$
	GIN	$.549 {\pm} .009$	$.551 {\pm} .007$	$.582 \pm .007$	
	GIN (attr masking)	$.588 {\pm} .004$	$.559 {\pm} .010$	$.625 {\pm} .004$	
	GIN (context pred)	$.541 {\pm} .005$	$.566 {\pm} .009$	$.621 {\pm} .003$	
	Grover	$.574 \pm .002$	$.544 {\pm} .006$	$.623 {\pm} .003$	
	Q-SAVI	$.606 {\pm} .003$	$.603 {\pm} .006$	$.650 {\scriptstyle \pm .002}$	$.643 \pm .003$