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• Machine learning models that can reliably predict clinically relevant molecular 
 properties have the potential to accelerate key steps in early-stage drug discovery 

• In practical settings, predictions are often most useful for novel compounds 
 that are structurally or functionally dissimilar to known molecules (a)

• Standard deep learning algorithms perform poorly in this out-of-distribution
 regime, yielding both incorrect and highly overconfident predictions (b)

• We propose Q-SAVI: a framework to specify explicit prior knowledge of 
 drug-like chemical space beyond (a) as a regularizing prior distribution 
 over the induced function space of a neural network (c)

• Encoding domain-knowledge as a prior distribution
 over the parameters of a neural network is difficult

• Instead, we consider the function space induced by a given
 neural network architecture (evaluated at a set of context points)

• We then rephrase the inference problem of learning a distribution over 
 parameters as learning a distribution over the functions these parameters encode

• This enables us to formulate a prior distribution over the space of Quantitative 
 Structure-Activity mappings and perform Variational Inference in the resulting 
 probabilistic  model, a framework we refer to as Q-SAVI

• Q-SAVI allows us to restrict a neural network’s hypothesis space by enabling the 
 specification of explicit, domain-informed prior knowledge by encoding:

 (1) problem-specific modeling preferences in the function-space prior itself

 (2) and providing set of (potentially unlabelled) context points it is enforced at
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Table 2. An overview of the test set performance of each model for each data split and featurization technique, quantified by the AUC-
ROC (↑) and the BRIER SCORE (↓). All entries indicate the mean and standard errors computed over 10 independent training runs with
different random seeds. The best models within a margin of statistical significance are highlighted in bold.

Model & Featurization Spectral Split Weight Split Scaffold Split Random Split
ECFP rdkitFP ECFP rdkitFP ECFP rdkitFP ECFP rdkitFP

A
U

C
-R

O
C

(↑
)

Logistic Regression .583±.000 .551±.000 .626±.000 .632±.000 .684±.000 .698±.000 .704±.000 .687±.000

Random Forest .576±.009 .552±.006 .592±.006 .567±.004 .605±.004 .642±.003 .696±.002 .690±.002

MLP .574±.006 .571±.003 .614±.004 .577±.005 .625±.010 .631±.014 .720±.002 .692±.004

Deep Ensemble .589±.006 .571±.002 .644±.001 .594±.002 .679±.001 .697±.003 .720±.001 .710±.003

GIN .549±.009 .551±.007 .582±.007 .664±.005 .685±.004

GIN (attr masking) .588±.004 .559±.010 .625±.004 .700±.002 .705±.002

GIN (context pred) .541±.005 .566±.009 .621±.003 .674±.003 .713±.003

Grover .574±.002 .544±.006 .623±.003 .689±.003 .701±.001

Q-SAVI .606±.003 .603±.006 .650±.002 .643±.003 .657±.004 .701±.002 .708±.001 .681±.002
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R

E
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)

Logistic Regression .131±.000 .111±.000 .051±.000 .049±.000 .101±.000 .100±.000 .087±.000 .088±.000

Random Forest .133±.000 .110±.000 .055±.000 .058±.000 .104±.000 .102±.000 .085±.000 .086±.000

MLP .133±.001 .111±.000 .050±.000 .055±.002 .103±.000 .108±.003 .087±.000 .088±.000

Deep Ensemble .133±.001 .110±.000 .048±.000 .052±.001 .101±.000 .100±.000 .086±.000 .086±.000

GIN .132±.001 .112±.001 .050±.000 .103±.000 .090±.001

GIN (attr masking) .130±.000 .114±.002 .049±.000 .100±.000 .087±.000

GIN (context pred) .134±.000 .113±.001 .050±.000 .101±.000 .087±.000

Grover .134±.001 .111±.001 .049±.000 .101±.000 .088±.000

Q-SAVI .130±.000 .112±.003 .047±.000 .048±.000 .102±.000 .099±.000 .088±.000 .090±.000

Following model training and hyperparameter selection, the
predictive accuracy and calibration of the estimated test-set
label probabilities were characterized by the area under the
ROC curve (AUC-ROC) and the BRIER SCORE, as these
enable the direct comparison of models across test sets with
different label distributions (see Table 2). Additionally, each
algorithm’s performance was characterized by the area un-
der the precision-recall curve (AUC-PRC) and the adaptive
calibration error (ACE; Nixon et al. (2019)), which closely
mirror the AUC-ROC and BRIER SCORE (see Table 5).

Results. The predictive accuracy and calibration metrics
presented in Tables 2 and 5 (see Appendix B.1) demonstrate
that Q-SAVI achieves significant performance gains in an out-
of-distribution setting. On the spectral and molecular weight
splits—the evaluation settings with the strongest covariate
and label shift—Q-SAVI outperformed all other algorithms
by a substantial and statistically significant margin in terms
of predictive accuracy. Similarly, its predictive uncertainty
estimates were significantly better calibrated than all other
algorithms on the molecular weight split and most other
algorithms on the ECFP-based spectral split.

On the substantially less data-shifted scaffold and random
splits, relatively simple machine learning algorithms (e.g.,
random forests and deep ensembles) as well as more so-
phisticated self-supervised pre-training-based approaches
consistently achieved the best predictive performance.

In line with the empirical observations of Ji et al. (2022),
IRM, GroupDRO, DANN, and DeepCoral—domain adapta-
tion and generalization techniques originally developed for
images—were found to perform worse than most other tech-
niques across most splits and featurizations (see Table 5).

5.4. Merck Molecular Activity Challenge

As a complementary assessment of the practical utility of
Q-SAVI, we evaluated the method on the Merck Molecular
Activity Challenge (Ma et al., 2015). Consisting of 15
datasets from real-world production settings, it provides
time-split training and test sets that represent the data shift
encountered throughout a molecular optimization campaign
(Sheridan, 2013). As the compound structures are only
provided in the form of anonymized atom-pair descriptors
in count and bit vector form, using a uniform subsample of
a large chemical database as a context point distribution is
not possible.

Table 3. Covariate and label shift of time-split data from the Merck
Molecular Activity Challenge. Covariate shift is quantified as the
(multi-)set Jaccard kernel-based MMD statistic, while label shift
is quantified as the two-sample Kolmogorov–Smirnov test statistic.

Dataset Label Shift Covariate Shift
Count Vector Bit Vector

HIVPROT 0.579 0.132 0.162
DPP4 0.375 0.112 0.125
NK1 0.419 0.071 0.062
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• We compare Q-SAVI to a range of self-supervised pre-training 
 and domain adapation techniques, outperforming all of them in
 terms of predictive accuracy and most of them in terms of calibration 

• Imbuing neural networks with contextualized prior knowledge of 
 the data-generating process substantially improves their performance in extrapolative, out-of-distribution regimes

• Q-SAVI also presents researchers with a transparent and probabilistically principled framework to encode additional, 
 problem-infoded modeling preferences, such as synthesizability, patentability, likely adverse side-effects, etc.
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Q-SAVI: A Framework to Specify Explicit Prior Knowledge

• We use Q-SAVI to specify an uninformative prior that encourages  
 high predictive uncertainty away from the training data and 
 enforce it on unlabeled molecules sampled uniformly from ZINC

• To construct a challenging and meaningful evaluation setup, we:

 • Curate and pre-process a practically relevant dataset 
  with high-quality bioactivity labels

 • Define appropriate statistics to quantify covariate
  and label shift in chemical space

 • Split molecules by molecular weight and using spectral 
  clustering, inducing more meaningful covariate shift
  than the standard approach of splitting by scaffold 

Scaffold split. Spectral split.Molecular weight split.

Experimental Setup

Results & Conclusion

Drug-like Chemical Space
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