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Outcome-Driven Variational Inference

We present a unified probabilistic framework for learning behaviors that allow

agents to achieve desired outcomes. This way, we get:
e User-specified reward — derived reward function
o Fixed discount factor — dynamic discount factor
e Unification of discrete- and continuous- state space formulations

Problem Statement & Model

How can we find policies that lead to desired outcomes?
— Frame the policy search problem probabilistically.

— Treat the desired outcome as a state realization S = g.

Known Time of Qutcome: Sy =g

Infer a policy w(at|st, Sp+ = g) that induces p(T|sp, S = g).

t—1

p(T0:¢, 81S0) = Pa(8|st, ar)mo(a|st) de(st’+1 sy, ap)mo(ay|sy)
t'=0
Unknown Time of Outcome: S~ =g

Infer a policy 7(at|st, S« = g) that induces p(7|sg, S+ = g).

np
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transdimensional distribution over finite trajectories:
t—1
p(T0:t, 8, tlso) = pr(t)pq(8lst, ar)mo(at|s) H Pd(Stv1lsy, ap)mo(agy|sy) (1)
t'=0

Solve the variational inference problem

min DicL(q(7 tlso) | p(tiso. S = &) 2

where q(7,t) = q(7|t)gr(t) with
t
QT(t|SO) — Q(At—l—l — 1‘80) Htlzl

q(T|t,s0) = m(a[st) IE’:O

q(Ayp = 0[sp) (3)

pd(St'+1 |St’a at')W (at'\st')- (4)

Theorem 1 (Outcome-Driven Variational Inference).
Solving Equation (2) is equivalent to maximizing

v SOv g QT Z QT <Pq(7'0:t‘t,so) _ 1Og pd(g|st7 at)

— DKL(Q(TO:ta t‘SO) H p(TO;t, t‘SO))
which can be expressed recursively as }

e |Q" (s0, a0, 81 q7)] — Diu(w(+[so) | mo(+|so)  (6)

with a novel Bellman backup

V7™(s0,8;q971) =

Q" (st,at, 8, qr) = (st at, 8 qr) + ¢(Apy1 = 0) Ep, [V (841,85 97)]
N —’
dynamic discount

(7)

a derived reward function

r(st,at, g qr) = (1 — q(Ap = 0)) log pylglst, ar) —Dir(ga, || pa,)s (8)
— — e —,_,—,—,—

reward weight  learnable from data
and an optimal “dynamic” discount function
(A ) 1 eQW(Stnatvg;QT) _1( ) ( )
q(Arr1 =0) =0 | log o () ] . 9
pd(g|stvat>

Theorem 2 (Outcome-Driven Policy lteration).

A. Outcome-Driven Policy Evaluation: Given 7 and a QV, the sequence
Q' = TTQ" converges to Q.

B. The policy 7 that solves

(B ) [Q7 (51,2, & 7))~ Dt (7' Clst) | mos1)}

and the variational distribution over T" defined in Equation (9) improve the

variational objective, that is, for all s, 7, g7

V(7™ qr,80) > V(7 qr,80) and V7 (7, g7, 80) > V(7 q7, 80).
C. Alternating between (A) and (B) converges to optimal 7 and ¢7 in the
variational family.

Empirical Evaluation

Full paper: timrudner.com/odrl
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Figure 1: Only ODAC consistently performs well on all six tasks.

Env 2D Ant Push | Fetch Window Faucet
ODAC 7 (1.20) 9 (0.48) 35 (2.7) 19 (6) 5.4 (0.62) 13 (4.2)
fixed p 2 (0.14) 11 (0.57) 34 (1.5) 15 (3) 5.0 (0.62) 15 (3.3)
fixed g7 0 (0.24) 12 (0.41) 37 (1.5) 53 (13) 7.9 (0.71) 37 (8.3)
fixed g7, Dy 1.3 (0.29) 13 (0.20) 38 (3.1) 66 (15) 6.0 (0.12) 38 (7.2)

Figure 2: Ablation results, showing mean final normalized distance (x100) at the end of training across 4 seeds.
ODAC is not sensitive to the dynamics models p; but benefits from the dynamic g variant.
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