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TL;DR

(i) We show that KL-regularized RL with behavioral reference policies derived

from expert demonstrations can suffer from pathological training dynam-

ics caused by a collapse in the predictive variance of behavioral reference

policies about states away from the expert demonstrations.

(ii) We demonstrate that this pathology can lead to instability and sub-

optimality in online learning, but that it can be prevented by specifying

non-parametric behavioral reference policies whose predictive vari-

ance is guaranteed not to collapse about previously unseen states.

(iii) We show that fixing the pathology allows KL-regularized RL to significantly

outperform state-of-the-art approaches on a range of challenging locomotion

and dexterous manipulation tasks.

Figure 1: Dexterous hand manipulation tasks on which our fix leads to a significant acceleration
in training and improvement in performance.

Reinforcement Learning & Behavioral Cloning

•An agent interacts with a discounted Markov Decision Process (S,A, p, r, γ).

S and A are the state and action spaces, p(· | st, at) are the transition dynam-

ics, r(st, at) is the reward function, and γ is a discount factor. The agent learns

a policy π(a | s).

• In behavioral cloning, a mapping π0 : S → A is learned from an offline dataset

D0 = {(s̄i, āi)}ni=1 of expert demonstrations, with n typically in the order of

1k− 10k.

Identifying the Pathology

KL-Regularized Reinforcement Learning

•Given a reference policy π0 and temperature α, KL-regularized RL augments

the reward with a KL-penalty:
∞∑
t=0

E(st,at)∼ρπ
[
γt (r(st, at)− αDKL(π(· | st) || π0(· | st)))

]
•For the KL divergence to be defined, we require the support of π to be contained

with in the support of π0.

•Behaviorally cloned stochastic policies parameterized by a neural network via

MLE experience a collapse in predictive variance about states off the offline

data manifold, effectively leading to a loss in support between π and π0.

Non-Parametric
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Figure 2: Predictive variances of non-parametric and parametric behavioral policies on a low
dimensional representation of a 39-dimensional dexterous hand manipulation state space (door-
binary-v0). Left: Non-parametric Gaussian process posterior behavioral policy πGP(· | s,D0) =

GP(µ0(s),Σ0(s, s
′)). Right: Parametric neural network Gaussian behavioral policy πψ(· | s) =

N (µψ(s),σψ(s)). Expert trajectories D used to train the behavioral policies are shown in black.

Proposition 1 (Exploding Gradients in KL-Regularized RL; ).Let π0(· | s) be a

Gaussian behavioral policy with mean µ0(st) and variance σ2
0(st), and let πφ(· | s)

be an online policy with reparameterization at = fφ(εt; st) and random vector εt.

Let the gradient of the policy loss with respect to the online policy’s parameters

φ be denoted ∇φJπ(φ). For fixed |at − µ0|, | ∇̂φJπ(φ) | → ∞ as σ2
0 →

0, when ∇φfφ(εt; st) 6= 0.

Full paper: timrudner.com/rl-pathologies

Fixing the Pathology
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Figure 3: Effect of decrease in predictive variance on performance.

We fix the pathology by specifying a non-parametric behavioral refer-

ence policy whose variance is guaranteed not to collapse about unseen states.

100K 200K 300K 400K 500K
Timesteps

0

5000

10000

HalfCheetah-v2

100K 200K 300K 400K 500K
Timesteps

−2500

0

2500

5000

Ant-v2

100K 200K 300K 400K 500K
Timesteps

0

2000

4000

6000
Walker2d-v2

100K 200K 300K 400K
Timesteps

0.00

0.25

0.50

0.75

1.00
pen-binary-v0

100K 200K 300K 400K
Timesteps

0.00

0.25

0.50

0.75

1.00
door-binary-v0

50K 100K 150K 200K
Timesteps

10−2

10−1

100 door-binary-v0 Ablations

N-PPAC (Ours)

SACfD

BRAC

SAC + BC

AWAC

BEAR

AWR

DAPG

ABM

Variance Type
Nonparametric GP (Exact Posterior)

Parametric Gaussian NN (Ensemble)

Parametric Gaussian NN (MC-D BNN)

Parametric Gaussian NN (MLE + Entropy)

Parametric Gaussian NN (MLE)

Figure 4: MuJoCo and dexterous hand manipulation tasks. Bottom Right: Comparison of
behavioral reference policies with the same gp predictive mean but different predictive variances.
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Figure 5: Online training returns for different numbers of expert demonstrations on the
HalfCheetah-v2 environment using different behavioral policies.
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