

TL;DR

- (i) We show that KL-regularized RL with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics caused by a collapse in the predictive variance of behavioral reference policies about states away from the expert demonstrations.
- (ii) We demonstrate that this pathology can lead to instability and suboptimality in online learning, but that it can be prevented by specifying non-parametric behavioral reference policies whose predictive variance is guaranteed not to collapse about previously unseen states.
- (iii) We show that fixing the pathology allows KL-regularized RL to significantly outperform state-of-the-art approaches on a range of challenging locomotion and dexterous manipulation tasks.

Figure 1: Dexterous hand manipulation tasks on which our fix leads to a significant acceleration in training and improvement in performance.

Reinforcement Learning & Behavioral Cloning

- •An agent interacts with a discounted Markov Decision Process $(\mathcal{S}, \mathcal{A}, p, r, \gamma)$. \mathcal{S} and \mathcal{A} are the state and action spaces, $p(\cdot | \mathbf{s}_t, \mathbf{a}_t)$ are the transition dynamics, $r(\mathbf{s}_t, \mathbf{a}_t)$ is the reward function, and γ is a discount factor. The agent learns a policy $\pi(\mathbf{a} \mid \mathbf{s})$.
- In behavioral cloning, a mapping $\pi_0 : S \to A$ is learned from an offline dataset $\mathcal{D}_0 = \{(\bar{\mathbf{s}}_i, \bar{\mathbf{a}}_i)\}_{i=1}^n$ of expert demonstrations, with n typically in the order of 1k - 10k.

ON PATHOLOGIES IN KL-REGULARIZED REINFORCEMENT LEARNING FROM EXPERT DEMONSTRATIONS

Tim G. J. Rudner[†]^{*}, Cong Lu[†]^{*}, Michael A. Osborne[†], Yarin Gal[†], Yee Whye Teh[†]

[†]University of Oxford *Equal contribution. Corresponding author: tim.rudner@cs.ox.ac.uk. 🍹 @timrudner @cong_ml

Identifying the Pathology

KL-Regularized Reinforcement Learning

the reward with a KL-penalty:

$$\sum_{t=0}^{\infty} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[\gamma^t \left(r(\mathbf{s}_t, \mathbf{a}_t) \right) \right]$$

- with in the support of π_0 .
- data manifold, effectively leading to a loss in support between π and π_0 .

Figure 2: Predictive variances of non-parametric and parametric behavioral policies on a low dimensional representation of a 39-dimensional dexterous hand manipulation state space (doorbinary-v0). Left: Non-parametric Gaussian process posterior behavioral policy $\pi_{\mathcal{GP}}(\cdot | \mathbf{s}, \mathcal{D}_0) = \mathbf{s}$ $\mathcal{GP}(\mu_0(\mathbf{s}), \Sigma_0(\mathbf{s}, \mathbf{s}'))$. **Right**: Parametric neural network Gaussian behavioral policy $\pi_{\psi}(\cdot | \mathbf{s}) = 1$ $\mathcal{N}(\boldsymbol{\mu}_{\psi}(\mathbf{s}), \boldsymbol{\sigma}_{\psi}(\mathbf{s}))$. Expert trajectories \mathcal{D} used to train the behavioral policies are shown in black.

0, when $\nabla_{\phi} f_{\phi}(\epsilon_t; \mathbf{s}_t) \neq 0$.

Full paper: timrudner.com/rl-pathologies

• Given a reference policy π_0 and temperature α , KL-regularized RL augments

$$\alpha \mathbb{D}_{\mathrm{KL}}(\pi(\cdot \mid \mathbf{s}_t) \mid \mid \pi_0(\cdot \mid \mathbf{s}_t))) \Big]$$

• For the KL divergence to be defined, we require the support of π to be contained

• Behaviorally cloned stochastic policies parameterized by a neural network via MLE experience a collapse in predictive variance about states off the offline

Proposition 1 (Exploding Gradients in KL-Regularized RL;). Let $\pi_0(\cdot | \mathbf{s})$ be a Gaussian behavioral policy with mean $\mu_0(\mathbf{s}_t)$ and variance $\sigma_0^2(\mathbf{s}_t)$, and let $\pi_{\phi}(\cdot \,|\, \mathbf{s})$ be an online policy with reparameterization $\mathbf{a}_t = f_{\phi}(\epsilon_t; \mathbf{s}_t)$ and random vector ϵ_t . Let the gradient of the policy loss with respect to the online policy's parameters ϕ be denoted $\nabla_{\phi} J_{\pi}(\phi)$. For fixed $|\mathbf{a}_t - \boldsymbol{\mu}_0|$, $|\nabla_{\phi} J_{\pi}(\phi)| \to \infty$ as $\sigma_0^2 \to \sigma_0^2$

HalfCheetah-v2 environment using different behavioral policies.