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Fixing the Pathology

(i) We show that KL-regularized RL with behavioral reference policies derived
from expert demonstrations can suffer from pathological training dynam-
ics caused by a collapse in the predictive variance of behavioral reference
policies about states away from the expert demonstrations.

(ii)We demonstrate that this pathology can lead to instability and sub-
optimality in online learning, but that it can be prevented by specifying
non-parametric behavioral reference policies whose predictive vari-
ance is guaranteed not to collapse about previously unseen states.

(iii) We show that fixing the pathology allows KL-regularized RL to significantly
outperform state-of-the-art approaches on a range of challenging locomotion
and dexterous manipulation tasks.

Figure 1: Dexterous hand manipulation tasks on which our fix leads to a significant acceleration
in training and improvement in performance.

Reinforcement Learning & Behavioral Cloning

e An agent interacts with a discounted Markov Decision Process (S, A, p,r,7).
S and A are the state and action spaces, p(- | s¢, at) are the transition dynam-
ics, 1(S¢, a¢) is the reward function, and + is a discount factor. The agent learns
a policy m(a|s).

e In behavioral cloning, a mapping 7y : & — A is learned from an offline dataset
Dy = {(si,a;) };-_; of expert demonstrations, with n typically in the order of

1k — 10k.

KL-Regularized Reinforcement Learning

e Given a reference policy 7y and temperature o, KL-regularized RL augments

the reward with a KL-penalty:
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o For the KL divergence to be defined, we require the support of 7 to be contained

with in the support of 7.

e Behaviorally cloned stochastic policies parameterized by a neural network via
MLE experience a collapse in predictive variance about states off the offline
data manifold, effectively leading to a loss in support between 7 and 7.
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Figure 2: Predictive variances of non-parametric and parametric behavioral policies on a low
dimensional representation of a 39-dimensional dexterous hand manipulation state space (door-
binary-v0). Left: Non-parametric Gaussian process posterior behavioral policy wgp(-|s,Dy) =
GP(peo(s), Xo(s,s’)). Right: Parametric neural network Gaussian behavioral policy 7y (- |s) =
N (py(s), op(s)). Expert trajectories D used to train the behavioral policies are shown in black.

Proposition 1 (Exploding Gradients in KL-Regularized RL; ). Let my(- | s) be a
Gaussian behavioral policy with mean p(s¢) and variance a'% (st), and let wy(- | s)
be an online policy with reparameterization a; = f(€t;8¢) and random vector ¢;.

Let the gradient of the policy loss with respect to the online policy’s parameters

¢ be denoted V¢Jﬁ(¢). For fixed |a; — |, |@¢Jw(¢)‘ — OO0 as ‘78 —
O, when V¢f¢(€t; St) 7§ 0.

Full paper: timrudner.com/rl-pathologies
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Figure 3: Effect of decrease in predictive variance on performance.

We fix the pathology by specifying a non-parametric behavioral refer-
ence policy whose variance is guaranteed not to collapse about unseen states.
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Figure 4: MuJoCo and dexterous hand manipulation tasks. Bottom Right: Comparison of
behavioral reference policies with the same GP predictive mean but different predictive variances.

15 Expert Demonstrations One Expert Demonstration

10000 10000

—— N-PPAC (Ours)

— Emnsemble Behavioral Policy

5000 5000

O/ O-'/

0K 100K 200K 300K 400K 500K 0K 100K 200K 300K 400K 500K
Timesteps Timesteps

—— MOC-Dropout Behavioral Policy
No Behavioral Policy (SAC)

Figure 5:  Online training returns for different numbers of expert demonstrations on the
HalfCheetah-v2 environment using different behavioral policies.
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