

TRACTABLE FUNCTION-SPACE VA BAYESIAN NEURAL

Summary

- We propose a function-space approach to variational inference in BNNs and derive a *tractable* function-space variational objective by approximating the BNN's variational and prior distributions via linearization of the function mapping.
- This approach leads to competitive predictive accuracy and significantly improved predictive uncertainty estimates compared to related methods, including deep ensembles, the Laplace approximation, parameter-space variational inference, and Monte Carlo Dropout.

Background

- Consider data $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N = (\mathbf{X}_{\mathcal{D}}, \mathbf{y}_{\mathcal{D}})$ with inputs $\mathbf{x}_n \in \mathcal{X} \subseteq \mathbb{R}^D$ and targets $\mathbf{y}_n \in \mathcal{Y}$, where $\mathcal{Y} \subseteq \mathbb{R}^Q$ for regression and $\mathcal{Y} \subseteq \{0,1\}^Q$ for classification tasks.
- Consider a function mapping defined by a neural network architecture given by $f: \mathcal{X} \times \mathbb{R}^P \to \mathbb{R}^Q$

Parameter-Space Variational Inference in BNNs

- Goal: Find posterior over parameters $p(\theta \mid D)$.
- Find variationally via $\min_{q(\theta) \in Q_{\theta}} \mathbb{D}_{\mathrm{KL}}(q_{\Theta} \parallel p_{\Theta|\mathcal{D}})$,
 - $\Leftrightarrow \max_{q(\boldsymbol{\theta})\in\mathcal{Q}_{\boldsymbol{\Theta}}} \{ \mathbb{E}_{q_{\boldsymbol{\Theta}}}[\log p(\mathbf{y} \mid f(\mathbf{X}_{\mathcal{D}}; \boldsymbol{\theta}))] \mathbb{D}_{\mathrm{KL}}(q_{\boldsymbol{\Theta}} \parallel p_{\boldsymbol{\Theta}}) \}$

Induced Distributions over Functions

• $f(\cdot; \Theta)$ is a random function induced by random vector Θ . • Prior distribution over functions (induced by p_{Θ}):

$$p_{f(\cdot;\boldsymbol{\Theta})}(f(\cdot;\boldsymbol{\theta})) = \int_{\mathbb{R}^P} p_{\boldsymbol{\Theta}}(\boldsymbol{\theta'}) \,\delta(f(\cdot;\boldsymbol{\theta}) - f(\boldsymbol{\theta'})) \,\delta(f(\cdot;\boldsymbol{\theta'})) \,\delta(f(\cdot;\boldsymbol{\theta'}))$$

• Posterior distribution over functions (induced by $p_{\Theta|\mathcal{D}}$):

$$p_{f(\cdot;\boldsymbol{\Theta})|\mathcal{D}}(f(\cdot;\boldsymbol{\theta})|\mathcal{D})$$

=
$$\int_{\mathbb{R}^{P}} p_{\boldsymbol{\Theta}|\mathcal{D}}(\boldsymbol{\theta}'|\mathcal{D}) \,\delta(f(\cdot;\boldsymbol{\theta}) - f(\cdot;\boldsymbol{\theta}'))$$

Tim G. J. Rudner[†] * Zonghao Chen[‡] † University of Oxford ‡ University College London $\ ^st$ Corresponding aut

 $(\cdot; \boldsymbol{\theta'})) \,\mathrm{d} \boldsymbol{\theta'}$ (1)

(2)))d**\(\(\)**'

Function-Space Variational I

Function-Space Variation

• Goal: Find posterior over functions • Find variationally via

 $\min_{q_{\Theta} \in \mathcal{Q}_{\theta}} \mathbb{D}_{\mathrm{KL}}(q_{f(\cdot;\Theta)} \parallel p)$

where

$$q_{f(\cdot;\boldsymbol{\Theta})}(f(\cdot;\boldsymbol{\theta})) = \int_{\mathbb{R}^{P}} q_{\boldsymbol{\Theta}}(\boldsymbol{\theta}') \,\delta(f(\cdot)) \,d\boldsymbol{\theta}') \,d\boldsymbol{\theta}') \,\delta(f(\cdot)) \,\delta(f(\cdot)) \,d\boldsymbol{\theta}') \,\delta(f(\cdot)) \,d\boldsymbol{\theta}') \,\delta(f(\cdot)) \,\delta(f(\cdot))$$

- Data Processing Inequality (Polyans $\mathbb{D}_{\mathrm{KL}}(q_{f(\cdot;\Theta)} \| p_{f(\cdot;\Theta)}) \leq$ • Function-space variational objective:
- $\mathcal{F}(q_{\mathbf{\Theta}}) = \mathbb{E}_{q_{f(\mathbf{X}_{\mathcal{D}};\mathbf{\Theta})}}[\log p(\mathbf{y}_{\mathcal{D}})]$ $-\sup \mathbb{D}_{\mathrm{KL}}(q_{f})$ $\mathbf{X}{\in}\mathcal{X}_{\mathbb{N}}$

where $\mathcal{X}_{\mathbb{N}} \doteq \bigcup_{n \in \mathbb{N}} \{ \mathbf{X} \in \mathcal{X}_n \, | \, \mathcal{X}_n \subseteq \mathcal{X}_n \}$

Approximation

- 1. Linearize mapping: $f(\cdot; \mathbf{\Theta}) \approx \tilde{f}(\cdot; \mathbf{\Theta}) \doteq f(\cdot; \mathbf{m}) + \mathbf{\Theta}$ with $\mathcal{J}_{\mathbf{m}}(\cdot) \doteq \frac{\partial f(\cdot; \mathbf{\Theta})}{\partial \mathbf{\Theta}}\Big|_{\mathbf{\Theta}=\mathbf{m}}$ to get $\widetilde{q}_{\widetilde{f}(\cdot;\boldsymbol{\Theta})}(\widetilde{f}(\cdot;\boldsymbol{\theta})) \approx q_{f(\cdot)}$ $\widetilde{p}_{\widetilde{f}(\cdot;\boldsymbol{\Theta})}(f(\cdot;\boldsymbol{\theta})) \approx p_{f(\cdot)}$
- 2. Estimate supremum via maximum c

 $\max_{\mathbf{X}\in\mathcal{X}_{\mathcal{C}}^{S}}I(\mathbf{X})\approx\sup_{\mathbf{X}\in\mathcal{X}_{\mathrm{F}^{\mathrm{T}}}}I(\mathbf{X})),\text{ where }$

Approximate Function-Space V

• For
$$q_{\Theta}(\theta) = \mathcal{N}(\theta; \mu, \Sigma)$$
, maximiz
 $\bar{\mathcal{F}}(\mu, \Sigma) = \frac{1}{M} \sum_{j=1}^{M} \log p(\mathbf{y}_{\mathcal{B}})$
 $- \max_{\mathbf{X} \in \mathcal{X}_{\mathcal{C}}^{S}} \mathbb{D}_{\mathrm{KL}}(\tilde{q}_{\tilde{f}}(\mathbf{X} + \mathbf{X}_{\mathcal{C}}))$

where $\boldsymbol{\epsilon}^{(j)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_P)$.

ARIATIONA NETWORF	L IN KS	FERENCE IN			TH	
Yee Whye Teh †	Yari	n Gal [†]			TRUS	
uthor: tim.rudner@	dcs.ox.	ac.uk. 🎔 Otimrudr	ner			
Inference in BNNs	S	Empirical Evaluation				
s $p(f(\cdot; \boldsymbol{\theta}) \mid \mathcal{D}).$		2 1 0 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2		 Predictive Mean Function Draw Training Data 		 Predictive Mean Function Draw Training Data
$p_{f(\cdot; \boldsymbol{\Theta}) \mathcal{D})},$	(3)	-6 -4 -2 0 2 4 6 -6 Figure 1. FSVI Posterior	-4 -2 0	2 4 6 distributions	-6 -4 -2	0 2 4 6 n datasets
$f(\cdot ; oldsymbol{ heta}) - f(\cdot ; oldsymbol{ heta}')) \mathrm{d}oldsymbol{ heta}$ nskiy and Wu, 2017):	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.90 -0.75 -0.60 -0.45 <u>x</u> -0.30 -0.15	$\begin{pmatrix} 4 \\ 2 \\ 0 \\ -2 \end{pmatrix}$	-0.90 -0.75 -0.60 -0.45 ,x -0.30 -0.15
$\in \mathbb{D}_{\mathrm{KL}}(q_{\Theta} \parallel p_{\Theta})$	(5)	-4 -2 0 2 4 -0.00 -4	-2 0 2	4-0.00	-4 -2 0	2 4 -0.00
$p[f(\mathbf{X}_{\mathcal{D}}; \boldsymbol{\theta}))]$ $f(\mathbf{X}; \boldsymbol{\Theta}) \parallel p_{f(\mathbf{X}; \boldsymbol{\Theta})})$	(6)	Figure 2: FSVI Posterior Table 1. Comparison of in- standard error over ten random Method	predictive d and out-of- seeds). Accuracy ↑	istributions of distribution	on the <i>I wo woo</i> performance mo AUROC M ↑	ons dataset. etrics (mean = AUROC NM ↑
$\subseteq \mathbb{R}^{n \times D} \}.$		MAP MFVI	$\begin{array}{c} \textbf{91.73} {\pm} 0.08 \\ \textbf{91.03} {\pm} 0.04 \end{array}$	0.037±0.001 0.038±0.001	87.00 ±0.30 93.10 ±0.34	74.85 ±1.31 88.88 ±0.74
ons		MFVI (tempered) MFVI (radial) MC DROPOUT SWAG DUO	91.38 ± 0.05 90.31 ± 0.11 90.55 ± 0.04 92.56 ± 0.05 92.40 ± 0.20	0.058 ± 0.001 0.035 ± 0.001 0.012 ± 0.001 0.043 ± 0.001	86.30±0.29 84.40±0.68 88.46±0.57 85.18±0.35 95 50±0 70	80.78±0.68 82.11±1.15 80.02±1.04 80.31±0.30 94 60±1 80
$+ \mathcal{J}_{\mathbf{m}}(\cdot)(\mathbf{\Theta} - \mathbf{m})$	(7)	BNN-LAPLACE	92.25 ±0.10 91.60 +0.14	0.012 ±0.003	95.55±0.60 95.60+6.00	- -
		FSVI $(p_{\mathbf{X}_{\mathcal{C}}} = \text{random monochrome})$ FSVI $(p_{\mathbf{X}_{\mathcal{C}}} = \text{KMNIST})$	92.52 ±0.13 92.67 ±0.15	0.014 ±0.002	96.55 ± 0.41 00 81 + 0.19	95.15 ± 0.71 97 44+0 24
		Deep Ensemble	92.49±0.01	0.012 ± 0.002 0.019 ± 0.000	89.22±0.09	83.17±0.91
$(\cdot; \boldsymbol{\Theta})(f(\cdot; \boldsymbol{\theta}))$	(8)	FSVI Ensemble	94.44 ±0.07	0.020 ± 0.001	97.85±0.15	96.95±0.20
$(\cdot; \boldsymbol{\Theta})(f(\cdot; \boldsymbol{\theta}))$	(9)	MAP	Accuracy ↑ 92 19+0 15	ECE↓ 0 046+0 001	OOD-AUROC ↑ 95 17+0 40	C-CIFAR Acc 1
over finite sample:		MFVI	89.98±0.09	0.040 ± 0.001	92.14 ± 0.34	79.36 ±1.35
ro $\mathcal{V}^S \div (\mathbf{v}^{(i)}) S$	(10)	MFVI (tempered) MC DROPOUT	90.87 ±0.11 91.32 ±0.06	0.048±0.001 0.041±0.001	91.82 ± 0.90 90.32 ± 0.57	79.86 ±1.32 80.19 ±1.44
$re \mathcal{A}_{\mathcal{C}} = \{\mathbf{A}_{\mathcal{C}}^{T}\}_{i=1}$		SWAG	93.13 ±0.14	0.067 ±0.002	89.79 ±0.50	76.12 ±0.51
		VOGN DUQ	84.27 ±0.20 94.10 ±0.20	0.040 ±0.002 —	87.60±0.20 92.70±1.30	_
Variational Object		CDC	77 60 ±0 64	_	88 30 +4 00	
	ive	$\frac{SPG}{FSVI (m_{T} - random monochrome)}$	92.21 ± 0.04	0 035 ±0 001	94.57 ± 0.24	— 80 76+0 48
ze	ive	FSVI ($p_{\mathbf{X}_{\mathcal{C}}} = random monochrome$) FSVI ($p_{\mathbf{X}_{\mathcal{C}}} = CIFAR-100$)	92.21 ± 0.04 92.27 ± 0.04	0.035±0.001 0.028±0.001	94.57 ± 0.24 98.02 \pm 0.10	
ze	ive	FSVI ($p_{\mathbf{X}_{\mathcal{C}}} = random monochrome$) FSVI ($p_{\mathbf{X}_{\mathcal{C}}} = CIFAR-100$) Deep Ensemble	92.21 ± 0.04 92.27 ± 0.04 95.13 ± 0.06	0.035±0.001 0.028±0.001 0.019±0.001	94.57 ± 0.24 98.02 ± 0.10 98.04 ± 0.07	- 80.76±0.48 81.03±0.49 81.22±0.37
ze $f(\mathbf{X}_{\mathcal{B}}; \hat{\mathbf{\Theta}}(oldsymbol{\mu}, \mathbf{\Sigma}, oldsymbol{\epsilon}^{(j)})$	ive ()))	FSVI ($p_{\mathbf{X}_{\mathcal{C}}} = random monochrome$) FSVI ($p_{\mathbf{X}_{\mathcal{C}}} = CIFAR-100$) Deep Ensemble FSVI Ensemble	92.21 \pm 0.04 92.27 \pm 0.04 95.13 \pm 0.06 95.19 \pm 0.03	0.035 ± 0.001 0.028 ± 0.001 0.019 ± 0.001 0.013 ± 0.001	94.57 ± 0.24 98.02 \pm 0.10 98.04 \pm 0.07 99.19 \pm 0.41	$-$ 80.76 \pm 0.48 81.03 \pm 0.49 81.22 \pm 0.37 81.35 \pm 0.48

Full paper: https://timrudner.com/isvi