

TL;DR

- •We show that continual learning can be formulated as function-space variational inference and propose a tractable variational objective for scalable and effective learning.
- We demonstrate that our method significantly outperforms related approaches on single- and multi-head tasks.

• Consider a neural network $f(\mathbf{x}; \boldsymbol{\theta})$ parameterized by stochastic parameters $\boldsymbol{\Theta} \in \mathbb{R}^P$ and define a conditional distribution of targets given function values $f(\mathbf{x}; \boldsymbol{\theta})$: $p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}; f)$.

Parameter-Space Variational Inference in BNNs • Want to find the posterior over parameters: $p(\theta \mid D)$ • Find variationally via $\min_{q(\boldsymbol{\theta}) \in \mathcal{Q}_{\boldsymbol{\theta}}} \mathbb{D}_{\mathrm{KL}}(q(\boldsymbol{\theta}) \parallel p(\boldsymbol{\theta} \mid \mathcal{D})),$

 $\Rightarrow \max_{q(\boldsymbol{\theta}) \in \mathcal{Q}_{\boldsymbol{\Theta}}} \left\{ \mathbb{E}_{q(\boldsymbol{\theta})}[\log p(\mathbf{y} \mid \mathbf{X}_{\mathcal{D}}, \boldsymbol{\theta}; f)] - \mathbb{D}_{\mathrm{KL}}(q(\boldsymbol{\theta}) \parallel p(\boldsymbol{\theta})) \right\} \right\}$ \Leftrightarrow

Function-Space Kullback-Leibler Divergence

- Want to find the posterior over functions: $p(f(\cdot; \theta) | D)$ • Find variationally via
 - $\min_{q(\boldsymbol{\theta})\in \boldsymbol{\mathcal{Q}}_{\boldsymbol{\theta}}} \mathbb{D}_{\mathrm{KL}}(q(f(\cdot;\boldsymbol{\theta})) \parallel p(f(\cdot;\boldsymbol{\theta}) \mid \boldsymbol{\mathcal{D}}))$
- Data Processing Inequality (Polyanskiy and Wu, 2017): $\mathbb{D}_{\mathrm{KL}}(q(f(\cdot;\boldsymbol{\theta})) \| p(f(\cdot;\boldsymbol{\theta}))) \leq \mathbb{D}_{\mathrm{KL}}(q(\boldsymbol{\theta}) \| p(\boldsymbol{\theta})) \quad (2)$
- If $\mathbb{D}_{\mathrm{KL}}(q(\boldsymbol{\theta}) \parallel p(\boldsymbol{\theta})) < \infty$, then the function-space KL is well-defined.

CONTINUAL LEAR SEQUENTIAL FUNCTION-SPACE V Tim G. J. Rudner[†] * Freddie Bickford Smith[†] Qixı [†]University of Oxford Corresponding author: tim.rud

(1)

Continual Learning via Fun

Proposition 1 (Continual Function-S tive). Let $q_t(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$ and p_t and let the linearization of the mapp θ be given by

 $\widetilde{f}(\cdot; \boldsymbol{\Theta}) \doteq f(\cdot; \widetilde{\boldsymbol{\theta}}) + \mathcal{J}_{\widetilde{\boldsymbol{\theta}}}(\cdot)$ For Θ distributed according to $q_t(\theta)$ distributions under the linearized m $\mathbf{X}, \mathbf{X}' \in \mathcal{X}$ are given by

 $\tilde{p}_t(\tilde{f}(\mathbf{X}; \boldsymbol{\theta})) = \mathcal{N}(f(\mathbf{X}; \boldsymbol{\mu}_{t-1}), \mathcal{J}_{\boldsymbol{\mu}_{t-1}})$ $\tilde{q}_t(f(\mathbf{X}; \boldsymbol{\theta})) = \mathcal{N}(f(\mathbf{X}; \boldsymbol{\mu}_t), \mathcal{J}_{\boldsymbol{\mu}_t}(\mathbf{X}))$ Under certain variational assumptio (see paper), we obtain the variational $\tilde{\mathcal{F}}(q_t(\boldsymbol{\theta})) \doteq \mathbb{E}_{q_t(f(\mathbf{X}_{\mathcal{D}_t};\boldsymbol{\theta}))}[\log p(\mathbf{y}_t)]$ $-\mathbb{D}_{\mathrm{KL}}(\widetilde{q}_t(f(\mathbf{X}_{\mathcal{I}}; \boldsymbol{\theta})))$

Proposition 2 (Continual Functionence (C-FSVI)). For a mini-batch (X_l) onal approximations to the variationa

 $K_{\mathcal{II}}^{p_t} \doteq \operatorname{diag} \left(\mathcal{J}_{\mu_{t-1}}(\mathbf{X}) \boldsymbol{\Sigma}_{t-1} \right)$ $K_{\mathcal{II}}^{q_t} \doteq \operatorname{diag} \left(\mathcal{J}_{\boldsymbol{\mu}_t}(\mathbf{X}) \boldsymbol{\Sigma}_t \mathcal{J}_{\boldsymbol{\mu}_t} \right)$ the objective can be optimized via st $\bar{\mathcal{F}}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) = \frac{1}{S} \sum_{t=1}^{I} \log p(\mathbf{y}_{\mathcal{B}_t} | f(\mathbf{X}_{\mathcal{B}_t}))$ $([f(\mathbf{X}_{\mathcal{I}};\boldsymbol{\mu}_t)]_{j,k})$

where $h(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t, \boldsymbol{\epsilon}^{(i)}) \doteq \boldsymbol{\mu}_t + \boldsymbol{\Sigma}_t \odot \boldsymbol{\epsilon}^{(i)}$ of Θ with $\epsilon^{(i)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_P)$ and Q_t output dimensions over which the KL is being evaluated.

RNING VIA
VARIATIONAL INFERENCE
uan Feng[†] Yee Whye Teh[†] Yarin Gal[†]
ther@cs.ox.ac.uk. Cettinudner
nction-Space VI
Space Variational Objec-

$$h(\theta) = \mathcal{N}(\mu_{t-1}, \Sigma_{t-1}),$$

 $h(\theta) = \mathcal{N}(\mu_{t-1}, \Sigma_{t-1}),$
 $h(\theta) = \mathcal{N}(\mu_{t-1}, \Sigma'_{t-1}),$
 $h(\theta) = h(\theta),$ the induced
 $happing \tilde{f}$ evaluated at
 $h(\xi) \geq t_t \mathcal{J}_{\mu_t}(X')^T),$
 $h(\xi) = h(\tilde{X}_{T}; \theta))).$
 $h(\xi) = h(\tilde{X}_{T}; \theta)),$
 $h(\mu_t, \Sigma_t, \epsilon^{(i)})))$
 $h(\xi) = h(\mu_t, \xi) = h(\xi)$
 $h(\mu_t, \Sigma_t, \epsilon^{(i)})))$
 $h(\xi) = h(\xi) = h(\xi)$
 $h(\xi) = h(\xi) =$

birical Evaluation

^T to state-of-the-art functional regularization methods.

ion-space and parameter-space variational inference.

tive performance of a selection of continual-learning each with either a multi-head (MH) or single-head denotes the mean accuracy across tasks at the end of for C-FSVI). For each task sequence, all methods use size unless explicitly indicated otherwise.

T (MH)	sFMNIST (MH)	pMNIST (SH)	sMNIST (SH)
10%		84.00%	_
90%		86.00%	
40%	98.60% ±0.04	93.00%	32.11% ±1.16
0%	89.60% ±1.75		
0.22	97.28% ±0.17	94.30% ±0.06	
∕ o ±0.04	99.00% ±0.03	94.90% ±0.04	35.29% ±0.52
		97.20% ±0.08	90.57% ±1.06
∕o ±0.04	99.19% ±0.02	95.76% ±0.02	92.87% ±0.14
66 ± 0.00	99.16% ±0.03	97.50% ±0.01	93.38% ±0.10
0.02	99.54% ±0.01		
_		89.59% ±0.30	51.44% ±1.22

ps://timrudner.com/cfsvi