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TL;DR

e We show that continual learning can be formulated as

function-space variational inference and propose a tractable
variational objective for scalable and effective learning.
e We demonstrate that our method significantly outperforms

related approaches on single- and multi-head tasks.
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Background

o Consider a neural network f(x; @) parameterized by stochas-
tic parameters ® & R*" and define a conditional distribution
of targets given function values f(x;0): p(y |x,0; f).

Parameter-Space Variational Inference in BNNs

e Want to find the posterior over parameters: p(@ | D)

e Find variationally via min  g)c g, IkL(q(0) || p(0] D)),

& max {Eyq)logply|Xp.0: )] ~ Dir(a(0) | p(6) }

7(0)eQe
Function-Space Kullback-Leibler Divergence

e Want to find the posterior over functions: p(f(-;0)|D)
e Find variationally via

q<g)ﬂ€ﬂge L(a(f(-:0)) [[p(f(-:0)]| D)) (1)

e Data Processing Inequality (Polyanskiy and Wu, 2017):

IL(q(f(+;0) | p(f(-:0))) < Dkr(q(8) [ p(8))  (2)

olf D1, (q(0) ]| p(0)) < o0, then the function-space KL is
well-defined.

Continual Learning via Function-Space VI

Proposition 1 (Continual Function-Space Variational Objec- _ »” _ _ n:
tive). Let q4(0) = N (u, X¢) and pi(0) = N (pp—1,3¢—1), | « ¥% . At o 5 o i
and let the linearization of the mapping | about parameters | '~ =+ % 5 o s T T H

0 be given by

- - 100.0 9 95l e —— 90 =g T
f(-:0) = f(-:6) + T4()(© — 6). O QP %ﬁﬁ?ﬁ* T ™7 T
For © distributed according to q+(0) and p:(0), the induced ool i . ﬁ | L e
distributions under the linearized mapping f evaluated at S P SR S %& —do—Tho255
X, X" € X are given by

pr(f(X:0)) = N(F(Xs pr1), Ty o (X) B 1Ty, (X))
G1(f(X:0)) = N(f(X; pt), Ty, (X) T, (X)) 1),

Under certain variational assumptions and approximations

Figure 1: Comparison of coreset selection methods.
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Figure 2: Comparison of C-FSVI to state-of-the-art functional regularization methods.

(see paper), we obtain the variational objective

F(Qt(e)) = ﬂqt(f(Xpt;H))[lf)gp(Yt | f(XDtNa 9)] (4)
— Dip(qe(f(Xz:0)) || pe(f(X1:6))). ]
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Proposition 2 (Continual Function-Space Variational Infer-
ence (C-FSVI)). For a mini-batch (Xp,,yg,), and under diag-
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onal approximations to the variational and prior covariance, ol M. T .
/ _|_ Evaluated after Task #X Evaluated after Task #X
R
KZI o dlag (jUtl(X)Et—letl(X ) ) Figure 3: Comparison of function-space and parameter-space variational inference.

a - 7: N T
KII - dla’g (jUt(X)Etjﬂwt(X ) ) Table 1. Comparison of predictive performance of a selection of continual-learning

methods on four task sequences, each with either a multi-head (MH) or single-head

the ObjeCtlve can be Optlmlzed via stochastic VI on (SH) setup. Each numerical entry denotes the mean accuracy across tasks at the end of

1 S training (over ten random seeds for C-FSVI). For each task sequence, all methods use
T _ : ) the same architecture and coreset size unless explicitly indicated otherwise.
Flpe. Bt =< Y _logp(yg, | f(Xg; hlp, Br. €)))
S < 1 Method SMNIST (MH)  sFMNIST (MH)  pMNIST (SH)  sMNIST (SH)
11—
EWC 63.10% — 84.00% —
Q: Xz P cd T 1 08.90% — 36.00% -
1 7Tk BTk VOL 98.40% 98.60%-0.04 93.00% 32.11%1.16
o E E P 1Og QT T T D 1 VCL (no coreset) 97.00% 89.60%=+1.75 — —
L1 i—1 2 -KII-jak -KII-jak' FRCL 97.80%=+0.22 97.28%+0.17 94.30%=0.06 —
=1 J= , FROMP 00.00%+0.04  99.00%=0.03  94.90%=0.04  35.20%=0.52
, . VAR-GP — — 07.20%-0.08 90.57%=+1.06
| Gf(XI? Nt)b’k Lf(XZ? “’t—l)]]?k’) C-FSVI ° 99.54%+0.04 99.19%+0.02 95.76%+0.02 92.87%0.14
[ Kpt ] , ’ C-FSVI (larger networks)  99.77%+0.00 99.16%0.03 97.50%-+0.01  93.38%+0.10
17 jak C-FSVI (no coreset) 99.62%-0.02 99.54%-+0.01 — —
C-FSVI (minimal coreset) — — 89.59%+0.30 51.44%+1.22

where h(pt, 3, ey = i+ 3, €l is a reparameterization
of © with ) ~ N (0,Ip) and Q¢+ is the number of model

output dimensions over which the KL is being evaluated.

Full paper: https://timrudner.com/cfsvi


https://timrudner.com/cfsvi

